
www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

1 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

•
•
•
•

Cursor-on-Target Capture from the Makito X
Makito X v2.2

This Addendum supplements the Makito X Encoder User's Guide with the information required to use the
Cursor-on-Target Metadata Capture option.

For general information on the Makito X, please refer to the Makito X Encoder User's Guide.

CoT Introduction
The Makito X supports both KLV (Key Length Value) and CoT (Cursor-on-Target) metadata capture and
stream insertion. This optional feature allows the encoder to capture metadata and then incorporate the
information within the metadata elementary stream of the standard MPEG Transport Stream. The
metadata may be captured either from the serial port interface or from a UDP source.

This Addendum provides instructions for controlling and managing CoT metadata insertion parameters
through the Makito X Web Interface.

For information on the CoT UDP implementation as well as KLV metadata capture, please refer to the
Makito X Encoder User's Guide or the online help available from the Web Interface.

Cursor-on-Target
The Makito X offers advanced capabilities for the translation of CoT (Cursor-on-Target) information (for
UAV applications) into industry standard KLV format. The input format of serial or network metadata
sources can be set to CoT from the Web Interface.

Cursor-on-Target is an XML-based protocol that enables Machine-to-Machine Targeting to:

provide special forces the ability to click on a laser rangefinder designating a hostile target,
pass precision coordinates,
send mensurated target coordinates to an airborne strike asset, and
download these directly into a GPS guided munition.

https://doc.haivision.com/display/MakitoXEnc22/Makito+X+Encoder+User%27s+Guide
https://doc.haivision.com/display/MakitoXEnc22/Makito+X+Encoder+User%27s+Guide

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

2 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

•
•

CoT to KLV Metadata Mapping
This section describes the CoT to KLV metadata mapping implemented for the Makito X.

The requirement is to transmit one KLV message in the transport stream for each pair of Aircraft and SPI
messages received by the Makito X. The format for these messages is provided in the following two
sections:

Aircraft Message
Sensor Point of Interest (SPI) Message

If a message is missing a CoT element from these lists of aircraft and sensor data elements, the KLV
message still transmits the information that was received. Reasons for missing information might include
a platform that does not support all of the CoT elements listed below or an incomplete message received
by the Makito X.

Aircraft Message
To distinguish between an aircraft message and associated data, the type field has the following values
associated: a-f-A-M-F-Q-r, a-f-A-C-F-r and a-f-A-M-F-M

To simplify this to allow for future platforms or changes, do a match against a-f-A which maps out to be a
friendly aircraft.

CoT Key (Original
Requirement)

KLV Key Based on
MISB EG0601.1

KLV LDS Name
Based on MISB
EG0601.1

16-byte Metadata Label
or 16-byte Set Designator
Based on MISB EG0104.5

Metadata Element or
Set Name Based on
MISB EG0104.5

uid 10 Platform
Designation

06 0E 2B 34 01 01 01 01
01 01 20 01 00 00 00 00

Device Designation

start 72 Event Start Time
UTC

0E 2B 34 01 01 01 01
02 01 02 07 01 00 00

Event Start Date Time -
UTC

time 2 Unix Time Stamp 0E 2B 34 01 01 01 03
02 01 01 01 05 00 00

User Defined Time
Stamp

track course 5 Platform Heading
Angle

0E 2B 34 01 01 01 01
01 10 01 02 00 00 00

Angle to North

track speed 9 Platform Indicated
Airspeed

Not defined in EG0104.5 Not defined in EG0104.5

point lat 13 Sensor Latitude 0E 2B 34 01 01 01 03
01 02 01 02 04 02 00

Device Latitude

point hae 15 Sensor True altitude 0E 2B 34 01 01 01 01
01 02 01 02 02 00 00

Device Altitude

point lon 14 Sensor Longitude 0E 2B 34 01 01 01 03
01 02 01 02 06 02 00

Device Longitude

altitude roll 7 Platform Roll Angle 0E 2B 34 01 01 01 07
01 10 01 04 00 00 00

(7 Platform Roll Angle) =
(event/detail/spatial/
altitude/roll)

altitude pitch 6 Platform Pitch Angle 0E 2B 34 01 01 01 07
01 10 01 05 00 00 00

(6 Platform Pitch Angle)
= (event/detail/spatial/
altitude/pitch)

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

3 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

Sensor Point of Interest (SPI) Message
To distinguish an SPI message and associated data, the type field has the following value associated: b-
m-p-s-p-i: x

CoT Key (Original
Requirement)

KLV Key Based on
MISB EG0601.1

KLV LDS Name
Based on MISB
EG0601.1

16-byte Metadata Label
or 16-byte Set
Designator Based on
MISB EG0104.5

Metadata Element or Set
Name Based on MISB
EG0104.5

uid 63 Sensor Field of
View Name

06 0E 2B 34 01 01 01 01
04 20 01 02 01 01 00 00

Image Source Device

point lat 23 Frame Center
Latitude

0E 2B 34 01 01 01 01
01 02 01 03 02 00 00

Frame Center Latitude

point hae 25 Frame Center
Elevation

0E 2B 34 01 01 01 0A
01 02 01 03 16 00 00

Frame Center Elevation

point le 46 Target Error
Estimate – LE90

Not defined in EG0104.5 Not defined in EG0104.5

point lon 24 Frame Center
Longitude

0E 2B 34 01 01 01 01
01 02 01 03 02 00 00

Frame Center Latitude

point ce 45 Target Error
Estimate – CE90

Not defined in EG0104.5 Not defined in EG0104.5

sensor azimuth 18 Sensor Relative
Azimuth Angle

0E 2B 34 01 01 01 01
01 10 01 02 00 00 00

(18 Sensor Relative
Azimuth Angle) = (sensor/
azimuth) - (5 Platform
Heading Angle)

sensor fov 16 Sensor Horizontal
Field of View

06 0E 2B 34 01 01 01 02
04 20 02 01 01 08 00 00

FOV - Horizontal

sensor vfov 17 Sensor Vertical
Field of View

06 0E 2B 34 01 01 01 07
04 20 02 01 01 0A 01 00

FOV - Vertical

sensor model 11 Image Source
Sensor

06 0E 2B 34 01 01 01 01
04 20 01 02 01 01 00 00

Image Source Device

sensor range 21 Slant Range 06 0E 2B 34 01 01 01 01
07 01 08 01 01 00 00 00

sensor

elevation

19 Sensor Relative
Elevation Angle

06 0E 2B 34 01 01 01 01
07 01 10 01 03 00 00 00

(19 Sensor Relative
Elevation Angle) = (event/
data/sensor/elevation) - (6
Platform Pitch Angle)

sensor roll 20 Sensor Relative Roll
Angle

06 0E 2B 34 01 01 01 01
07 01 10 01 01 00 00 00

(20 Sensor Relative Roll
Angle) = (event/data/
sensor/roll) - (7 Platform
Roll Angle)

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

4 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

Seriald Version 1 Over-the-Air Protocol
This section describes the SerialD protocol used to transport CoT XML data on serial ports. For network
sources, the XML data is directly carried over UDP.

Seriald Overview

Seriald makes use of a layered communications architecture, as can be seen in Figure 1 below. In this
arrangement, data to be sent over the wire enters via the top of the stack, and works its way down. Each
layer processes the data, possibly adding, removing, or modifying bytes, and passes the data down to the
next layer. The bottom most layer is connected to the communications hardware itself.

Each individual layer operates independently from the others; the layered design allows individual layers
to be added, removed, reordered, or modified without requiring changes outside of the code for an
individual layer.

The layer stack shown in the figure above is typical; however, it is not uncommon to encounter situations
in which certain layers (such as the Reed-Solomon FEC layer) would be missing, or additional layers (i.e.,
for channel access) would be added. But the stack shown is the most common setup. This document
describes the over-the-air format for version 1 of Seriald .

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

5 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

•

•

•

Channelization
Channelized Message Format

CHAN DATA

Messages from one Seriald to another are sent over virtual channels, allowing multiple logical data
streams to be carried over a single serial connection. The channel is identified by a single byte prepended
to the message, as seen in Figure 2 above. The channel with the identifier '0' (ASCII character 0x30) is
used as the management channel for inter-node control communications. The channel with the identifier
'1' (ASCII character 0x31) is designated as the CoT channel, and is expected to carry Cursor-on-Target
messages exclusively. Other channels are treated as carrying opaque data, with no expectation as to their
content. There are typically 5 user channels, designated as "CoT", "Chan2", "Chan3", "Chan4", and
"Chan5", which use the channel tags "1", "2", "3", "4", and "5", respectively.

For example, if a station wishes to send the message "hello" on channel "3", it would send:

3hello

With the corresponding hex dump:

33 68 65 6c 6c 6f

There are currently two messages defined for the management channel. The first one is the "Comm
Check" request, and the other is the corresponding "Comm Check" response. These messages are used to
verify basic communication over the end-to-end communication system. The format of the Comm Check
message is:

?seq#time#host

where:

seq is a unique (usually monotonically increasing) sequence number. It can be any alphanumeric

string not containing the character ' # '.

time is the current time at the sending station. It is usually expressed as an ASCII string
representing the current time. in seconds since the epoch (1970-01-01T00:00:00.00Z); however, it
may be expressed in any format desired by the sending station, as long as the representation does
not contain the character '#'. This time value is not to be interpreted by other stations; it will be
returned to the sending station for round trip time (RTT) calculation.
host is an identifier for the sending station. It is commonly the ASCII string returned by the

gethostname(2) system call, but it may be any sequence of bytes that does not contain the
character '#'.

Upon receipt of a Comm Check request message, a station should change only the first character from a '
? ' to a ' ! ' (to indicate a change from a request to a reply), and send the new message back out.

Upon receipt of a Comm Check reply, the host should use the contents of the time field to calculate a
round trip time for the message.

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

6 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

•

•

•

If a station with a hostname of "foo" wishes to send its 12th Comm. Check at 2006-0316T17:03:38.00Z,
the string passed to the layer below (including the leading "0" to indicate that it is a message on the
management channel) would be:

0?12#1132528618.00#foo

with hex dump:

30 3f 31 32 23 31 31 33 32 35 32 38 36 31 38 2e 30 30 23 66 6f 6f

Upon receipt, any (and all) other station(s) would respond with:

0!12#1132528618.00#foo

with hex dump:

30 21 31 32 23 31 31 33 32 35 32 38 36 31 38 2e 30 30 23 66 6f 6f0

Automatic Repeat Request
ARQ Message Format

ARQHDR DATA

Reliable delivery of a message is accomplished by an automatic repeat request (ARQ) scheme. When a
message is to be encoded for transmit, it is broken up into smaller chunks, typically of not more than
1000 bytes. Each chunk has a header applied to it, as seen in the table above, and is passed down to the
next layer for further processing. If an ACK for an individual chunk is not received within a time-out
period, typically 120 seconds, then the chunk is retransmitted. Chunks are retransmitted until the
maximum retransmission limit is reached. This limit is typically 4, after which the message is considered to
have failed.

The header for each chunk of an ARQ message is given by:

R#from#to#seq:part:total>

The leading " R " indicates that the message is requesting reliable delivery.

from is the unique station identifier of the sending node (also referred to as its MAC address).

to is the unique station identifier of the recipient node. The station identifiers can be any

alphanumeric sequence made up of characters other than ' # '. There is no preset requirement on
the length of station identifiers. The only requirement is that they be unique across the network.
seq is a unique message identifier. It must be an ASCII string of a numeric values, but there is no

requirement that its value be related to the value used on any other messages. (i.e., it does not
need to be sequential in relation to previous messages, despite its name). It must be unique across
all messages sent from a source node to a destination node, but it is the same for all chunks of a
given message. Note that in order to support the reinitialization of one node without requiring the
restart of all other nodes, the sequence number should attempt to be unique for all time, not just
unique to a given invocation of the software (i.e., initialize with a sufficiently diverse random value,
or save state across restarts).

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

7 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

•

•

•

part indicates which chunk of the message follows.

total indicates the total number of chunks. Both are ASCII strings representing decimal numbers.

The " > "character indicates that it is an outgoing chunk.

Immediately following the header will be one chunk of message data. Message chunks are typically 1000
bytes long, but there is no requirement that the chunks be any particular size, or all the same size. The
final chunk will typically be shorter than the previous ones, as the message is not padded to fill out a
partial chunk.

When a reliable message addressed to a particular station is received from the radio by that station, the
receiving station should indicate successful reception with the ACK message:

R#from#to#seq:part:total<

where seq , part , and total are exactly as taken from the received message. The " < " character
indicates that the message is an ACK. No data should follow the ACK. (However, there may be multiple
independent messages concatenated and sent, as detailed in the "Bit Framing" section.) The values for
from and to are relative to the station sending the ACK. (i.e., they would be swapped from the

message being ACKed.)

When a chunk of a reliable message is received, it should be buffered until all parts have been received.
When all parts have been received, the entire message should be reassembled (without any ARQ
headers), and passed up the stack for delivery. Message parts may arrive out of sequence. Individual
parts may be received more than once. In either of these cases, the message should only be passed up
exactly once, regardless of how many times various parts arrive.

In order to meet this requirement, it is necessary that a receiving station continue to keep a record of
messages that have been received after the complete message has arrived and been passed up the stack.
In the case where the ACKs are not properly received at the sending node, the sender may re-send the
entire message multiple times, and despite multiple complete sets of chunks arriving, only one copy of
the message should be passed up the stack.

If a message is not to receive reliable transport (i.e., SA message that are to be routinely resent), then the
ARQ header should be ' U# ', to indicate unreliable delivery. When a message with a leading ' U# ' is

received, the ' U# ' should be stripped off, and the message body should be immediately passed up the
stack.

For example, if the message "hello" wishes to be sent reliably from station "a" to station "b", the sending
station ("a") would transmit:

R#a#b#12:1:1>hello

with the corresponding hex dump:

52 23 61 23 62 23 31 32 3a 31 3a 31 3e 68 65 6c 6c 6f

In this case, the sequence number for this message is 12.

Upon receipt, station "b" would respond with:

R#b#a#12:1:1<

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

8 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

with the corresponding hex dump: 52 23 62 23 61 23 31 32 3a 31 3a 31 3c

and station "b" would pass the message up the stack, as it is complete.

If a reliable message arrives at any station other than the one to which it is addressed, it is discarded, no
ACK is generated, and no message is passed up to higher layers.

If station "a" wanted to send the message "hello" unreliably, it would send:

U#hello

With the corresponding hex dump:

55 23 68 65 6c 6c 6f

As unreliable messages are all implicitly broadcast, there is no address specified. Upon receipt of the
unreliable message, the receiving station(s) should pass the message up immediately, and no ACK is
generated or sent. It should be noted that unreliable messages cannot be fragmented.

Frame Check Sequence
Message with Appended Frame Check Sequence

DATA CRC16

Verification of successful reception of a message is ensured via a CRC16 frame check sequence (FCS).
The FCS is appended to the message data as shown in the table above, and is generated using the IBM
BISYNC CRC16 algorithm, with a generator polynomial of x16+x15+x2+1. C code for a compatible
implementation of the algorithm is:

unsigned short int crc16(unsigned char *d, int n)
{
 unsigned short int crc=0
 int i, bit;

 for (i = 0; i < n; i++) {
 crc ^= d[i];
 for (bit = 0; bit < 8; bit++)
 crc = crc & 1 ? (crc >> 1) ^ 0xa001 : crc >> 1;
 }
 return crc;
}

The 16 bit CRC code is stored in big endian format. When decoding received data, if the received CRC16
does not match the computed CRC16 for the data (up to, but not including the 16 bit FCS), then the entire
message is considered to be in error and should be discarded.

For example, if the input message is "hello", then the resulting sequence would be:

68 65 6c 6c 6f 34 d2

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

9 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

Forward Error Correction
Reed-Solomon Encoded Message Format

DATA PARITY DATA

Forward Error Correction (FEC) is accomplished by applying a (31,21) Reed-Solomon code to the data.
The Reed-Solomon algorithm uses 5 bit symbols, with 31 total symbols per codeword, comprised of 21
data symbols followed by 10 parity symbols. Note that the Makito X implementation does not check
parity symbols.

The code over GF(25) is defined by the primitive polynomial x5+x2+1. The power of the first of the 10
consecutive roots of the generator polynomial is 120, and the primitive of the field is given as x. Each
codeword is 155 bits long. The encoded sequence is formatted as sets of 105 bits of message data,
followed by 50 bits of parity information as shown in the previous figure. Symbols are packed into bytes
MSb first. (i.e., the symbol 10111 would get packed into a byte as 10111000, with the next symbol starting in
the 3 least significant bits of that byte.)

As the input data cannot necessarily be broken into an integer number of codewords, prior to the Reed-
Solomon encoding process, a 16 bit little-endian length field (len) is prepended to the data. This length

field is a count of the number of original data bytes in the message (not including the 2 bytes of len).
The message data is then padded by appending sufficient zero bits as to result in an integer number of
codewords. When a block of received symbols is being decoded, if the total decoded length is less than
len+2 , then the whole block is considered to be in error and is discarded. If it is longer than len+2 , then

the two bytes of len are removed, and the next len bytes are extracted and passed up to the next
layer.

For example, if the input message is "hello", then the string passed to the Reed-Solomon encoder would
be 05 00 68 65 6c 6c 6f ., and the resulting coded sequence would be (including 49 padding bits
appended to the source data to make it an integer multiple of 105 bits in length, and the five pad bits
appended to the encoded sequence to fill out the last byte):

05 00 68 65 6c 6c 6f 00 00 00 00 00 00 3b e3 8b e5 c7 ac 20.

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

10 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

Bit Framing
Bit Framed Message Format

SYNC LEN LEN LEN DATA

Bit framing is accomplished by marking the start of a message with the byte sequence
(represented as hex values)

6f 48 65 59 21

Due to the requirement that these bytes be shifted out LSb first, the bit sync sequence seen on the wire
would be:

1111011000010010101001101001101010000100

Immediately following that sequence, three copies of the length of the following data block (not including
the bit framing header) are appended, as shown in the figure above. Each length is composed of a 16 bit
little endian value indicating the number of bytes, followed by a length check, which is 16 bits calculated
as (((2<<16)–(2*len))&0xffff) . The data to be sent follows the three length plus check repetitions.

For example, if the input sequence is " hello ", the hex dump of the sequence of bytes sent out would be:

6f 48 65 59 21 05 00 f6 ff 05 00 f6 ff 05 00 f6 ff 68 65 6c 6c 6f

When data is received from the radio, it is compared to the sync pattern by successive bit shifts, until the
detection threshold has been met. A valid sync sequence is received when the number of bit differences
between the target sequence and the received sequence is 4 or less (90% match). If the complement of
the target sequence and the received sequence differ by 4 or less bits, then an inverted sync is detected,
and all subsequent data read from the port following the sync sequence is inverted.

Once a good packet has been detected, which occurs if at least one length is received correctly (i.e., one
in which the computed checksum agrees with the received checksum), the len bytes immediately
following the three encoded lengths are received and passed up to the next layer.

One consequence of the way in which the message length is encoded is that the maximum length of an
individual message is 216-1, or 65535 bytes. In order to send messages longer than that, the message may
be sent using the reliable delivery method (see the "Automatic Repeat Request" section), which will
break the message up into smaller pieces prior to transmit. Note that there is no way to send a broadcast
or best-effort delivery message with total size greater than 65535 bytes. Also note that this is the
maximum size of the message body after all transforms performed by higher layers in the stack have
been applied. This results in a maximum size for an unreliable message at approximately 43K bytes,
assuming the FEC described in the section "Forward Error Correction" is in use.

Serial Port Timing
Data to be sent out over the serial port to an attached radio must observe various timing constraints in
order to be successfully received at a remote node. These relations can be seen in the following figure:

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

11 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

When a station has data to transmit, it must assert PTT (via RTS). The station waits for acknowledgment
that the radio is ready to accept data, which may be indicated by the radio asserting CTS, the radio
providing CLK, or there may be no indication. The sending station must wait for the Cts2Data time
(specified in milliseconds) after CTS is received before attempting to send any data. If the radio does not
provide CTS in response to RTS, CTS is assumed to occur simultaneously with the asserting of RTS, and
therefore, the Cts2Data period begins when RTS is asserted. A typical value for Cts2data is 500 msec,

but it varies depending on the communications hardware in use. Once the Cts2Data period has elapsed,
the station sends out a sequence of zero or more pre-pad characters. These characters may be repeated
occurrences of a single character, a rotating set of characters, or any other characters as necessary, as
long as the sequence does not include the sync sequence discussed in the section "Bit Framing". Once
the pre-pad characters have been sent, one or more messages may be concatenated and sent. Zero or
more bits of filler data may be inserted between the messages, with message boundaries being
demarcated as discussed in the "Bit Framing" section. Multiple messages may be concatenated until the
total transmission time reaches MaxTxTime , which is specified in milliseconds. MaxTxTime is measured

from when PTT is asserted. MaxTxTime is configurable, with a typical value of 60000 msec.

If RTS is asserted, and no CTS (or clock) is returned within a reasonable time (typically 10000 msec), then
RTS is de-asserted, and the cycle begins again.

When there are no more messages to send, or MaxTxTime has elapsed, a sequence of zero or more post-
pad characters are sent, subject to the same constraints as the pre-pad characters. Once the post-pad
characters have been sent, PTT is held asserted for the time specified in Data2Rts (in milliseconds).

Once Data2Rts has elapsed, PTT is released. Data2Rts often has the same value as Cts2Data .

After PTT is released, a sending station may not initiate a new transmission for a period of IdleChannel ,

which is specified in milliseconds. In addition, a station may not initiate a transmission until TurnAround
(specified in milliseconds) has elapsed following any indication of channel activity. This includes receiving
any bytes from the serial device, or any other indication provided, such as asserting of the CD line.
Typical values for IdleChannel and TurnAround are 3000 msec and 1000 msec, respectively.

Data to be sent over the radio is transmitted least significant bit first. When driving a radio via a
synchronous connection, there are no character framing bits. Each byte is transmitted as exactly 8 bits.
As a consequence, when a transmission begins, there must be a continuous, uninterrupted flow of bytes
out the port; any pauses will be interpreted as extra data bits inserted in the middle of the message,
which will corrupt the data.

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

12 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

For example if the two bytes 0x12 and 0x34 are to be sent out, the bit sequence seen on the wire will be:

0100100000101100

where the bit on the left represents the first bit sent, and time increases to the right.

Data to be received should be shifted in LSb first, and delivered repacked into bytes such that the most
significant bit of the ith byte was received immediately before the least significant bit of the (i+1)th byte.

All example byte sequences in this document assume this data packing convention.

Data that is sent via an asynchronous connection (typically to a radio, null modem, or other asynchronous
device) is sent with the appropriate number of start and stop bits, as required by the asynchronous
device in use.

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

13 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

Conclusion
Given the layer stack in the figure in Seriald Overview, if the message "hello" is to be sent on channel 3,
and it is to be carried unreliably, the resulting byte sequence sent to the serial port is as follows:

The same message ("hello"), if sent reliably, with the same coding:

Note that due to the fact that the Reed-Solomon block size is 155 bits, which is 19.375 bytes, the coloring
of individual bytes beyond the first block is approximate, as individual message bytes may contain bits
from two separate layers. Individual codewords are not padded out to be an integer number of bytes;
only the last codeword is padded so that the overall message occupies an integer number of bytes. This
is why the actual message data in the above example is not recognizable as the ASCII string "hello".

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

14 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

1.

2.

Configuring CoT Metadata Capture from the Web Interface

To configure CoT Metadata Capture:

Click the Streaming icon on the toolbar. On the Streaming page, click General Settings on the
navigation bar and Metadata on the sidebar.
The Metadata List View opens, displaying the list of defined Metadata sources for the encoder.

(Serial CoT Input) To view or modify CoT input details, click the link for the Serial source (i.e., the
first line in the table).

Note

CoT Metadata Capture is an optional feature and must be installed at the factory or via a field
upgrade by installing a license file.
For metadata captured from the serial port, before you can configure the Metadata settings, the
COM Port Mode must be set to Metadata. Please refer to the Makito X Encoder User's Guide or the
online help under Managing the COM Port.



Note

The Makito X auto-detects the hardware setup of the encoder, so when CoT Metadata
Capture has been installed and Metadata has been enabled on the COM Port, the first input
on the Metadata List View is filled in as shown above.



https://doc.haivision.com/display/MakitoXEnc22/Makito+X+Encoder+User%27s+Guide
https://doc.haivision.com/display/MakitoXEnc22/Managing+the+COM+Port

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

15 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

The Metadata Detail View opens for the selected metadata source.

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

16 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

3.

4.
5.
6.

7.
8.

9.

10.

(UDP Source) From the Metadata List View, Click Add.
The Metadata Detail View opens for you to specify a new metadata source.

Type in the Name for the input.
Select CoT (Cursor-on-Target) for the Data Format.
Enter the Max Aircraft SPI Delta. For details, see Metadata Settings in the Makito X Encoder User’s
Guide or online help.
To apply your changes, click Apply.
To start or stop the stream, click Start or Stop (as applicable).

To view Metadata statistics, click Statistics. For details, see Metadata Statistics in the Makito
X Encoder User’s Guide or online help.
To return to List View, click Metadata from the sidebar.

Obtaining Documentation
This document was generated from the Haivision InfoCenter. To ensure you are reading the most up-to-
date version of this content, access the documentation online at https://doc.haivision.com. You may
generate a PDF at any time of the current content. See the footer of the page for the date it was
generated.

Tip

You can also change the status for a source from the List View by clicking the dropdown
menu under Actions and selecting either Start or Stop (as applicable).



https://doc.haivision.com/display/MakitoXEnc22/Metadata+Settings
https://doc.haivision.com/display/MakitoXEnc22/Metadata+Statistics
https://doc.haivision.com

www.haivision.com

Makito X Encoder 2.2
Cursor-on-Target Capture from the Makito X

17 Generated on: 2024-02-09 18:57:59
HVS-ID-AD-COT-22, Issue 01

Getting Help

General Support North America (Toll-Free)
1 (877) 224-5445

International
1 (514) 334-5445

and choose from the following:
Sales - 1, Cloud Services - 3, Support - 4

Managed Services U.S. and International
1 (512) 220-3463

Fax 1 (514) 334-0088

Support Portal https://support.haivision.com

Product Information info@haivision.com

https://support.haivision.com
mailto:info@haivision.com

	CoT Introduction
	Cursor-on-Target

	CoT to KLV Metadata Mapping
	Aircraft Message
	Sensor Point of Interest (SPI) Message

	Seriald Version 1 Over-the-Air Protocol
	Seriald Overview
	Channelization
	Automatic Repeat Request
	Frame Check Sequence
	Forward Error Correction
	Bit Framing
	Serial Port Timing
	Conclusion

	Configuring CoT Metadata Capture from the Web Interface
	Obtaining Documentation
	Getting Help

