
Furnace™

IP Video System
API Integrator’s Guide v6.6

HVS-ID-IG-VF-API-66
Issue 01

Copyright

©2016 Haivision Network Video. All rights reserved.

Document Number: HVS-ID-IG-VF-API-66
Version Number: v6.6-01

This publication and the product it describes contain proprietary and confidential informa-
tion. No part of this document may be copied, photocopied, reproduced, translated or
reduced to any electronic or machine-readable format without prior written permission of
Haivision Network Video. The information in this document is subject to change without
notice. Haivision Network Video assumes no responsibility for any damages arising from
the use of this document, including but not limited to, lost revenue, lost data, claims by third
parties, or other damages.

If you have comments or suggestions concerning this integrator’s guide, please contact:

Technical Publications Department
Haivision Network Video
4445 Garand
Montréal, Québec, H4R 2H9 Canada

Telephone: 1-514-334-5445
Toll-free (North America) 1-877-224-5445
infodev@haivision.com

Trademarks

The Haivision logo, Haivision, and certain other marks used herein are trademarks of
Haivision. All other brand or product names identified in this document are trademarks or
registered trademarks of their respective companies or organizations.

HDMI, the HDMI logo and High-Definition Multimedia Interface are trademarks or regis-
tered trademarks of HDMI Licensing LLC.

mailto:infodev@haivision.com

Furnace API Integrator’s Guide, v6.6, Issue 01 3

Table of Contents

About This Guide .. 5

About Haivision.. 6
Audience ... 6
Reliability of Information ... 6
Obtaining Documentation... 6
Related Documents ... 7
Service Support... 7
Document Conventions... 7

Chapter 1: Introduction
URIs for REST Resources .. 10

URI Structure ... 10
OAuth.. 11

Implementing OAuth.. 11
REST API Responses ... 14

Example Success Response ... 15
Example Error Response ... 16
Sorting Response Content ... 16

Diagnostics.. 17
XML Entities .. 18

Chapter 2: API Reference
Summary of Furnace API Resources.. 21
Demo Resources ... 22

Demo XML Entities ... 22
Demo API Endpoints ... 22

Asset Resources .. 25
Asset XML Entities.. 25
Asset API Endpoints .. 26

Client Resources ... 31
Client XML Entities ... 31
Client API Endpoints ... 32

Command Resources .. 36
Command XML Entities .. 36

 Table of Contents

Furnace API Integrator’s Guide, v6.6, Issue 01 4

Command API Endpoints... 41
Program Resources ... 42

Program XML Entities ... 42
Program API Endpoints ... 42

Recording Resources .. 44
Recording XML Entities .. 44
Recording API Endpoints... 48

Recorder Resources .. 57
Recorder XML Entities .. 57
Recorder API Endpoints... 58

Station Resources.. 62
Station XML Entities ... 62
Station API Endpoints.. 64

Volume Resources .. 71
Volumes XML Entities .. 71
Volumes API Endpoints... 71

Chapter 3: Error Codes

Chapter 4: Example Implementation
PHP ... 76

Chapter 5: Simple Testing From the Command Line

Appendix A: Warranty Information
Software End User License Agreement.. 80

READ BEFORE USING .. 80

Furnace API Integrator’s Guide, v6.6, Issue 01 5

About This Guide

Welcome to the API Integrator’s Guide for Haivision’s Furnace™ Version 6.6 Application
Programming Interface (API). This guide describes the API functions that can be used to
interface third party management systems with the Furnace.

NOTE This guide is intended for system administrators and authorized site personnel
only. Please see the InStream User’s Guide for information on the system interfaces that
InStream users see.

Topics In This Section

About Haivision . 6
Audience . 6
Reliability of Information . 6
Obtaining Documentation . 6
Related Documents . 7
Service Support . 7
Document Conventions . 7

 About This Guide
About Haivision

Furnace API Integrator’s Guide, v6.6, Issue 01 6

About Haivision

Haivision Network Video is a global leader in delivering advanced video networking,
digital signage, and IP video distribution solutions. Haivision offers complete end-to-end
technology for video, graphics, and metadata to help customers to build, manage, and
distribute their media content to users throughout an organization or across the Internet.
Haivision has specific expertise in the enterprise, education, medical/healthcare, and
federal/military markets.

Haivision is based in Montreal and Chicago, with technical centers in Beaverton, Oregon;
Austin, Texas; and Hamburg, Germany.

Audience

This guide is directed towards qualified developers and system integrators who are familiar
with XML and HTTP. Note that you can interface with the API using any programming
language that supports XML and HTTP communication.

Reliability of Information

The information contained in this integrator’s guide has been carefully checked and is
believed to be entirely reliable. However, as Haivision Network Video improves the reli-
ability, function, and design of its products, the possibility exists that this guide may not
remain current.

If you require updated information, or any other Haivision product information, contact:

Haivision Network Video
4445 Garand
Montréal, Québec, H4R 2H9 Canada

Telephone: 1-514-334-5445
Email: infodev@haivision.com

Or visit our website at: http://www.haivision.com

Obtaining Documentation

You may download the latest software, Release Notes, and other relevant documentation
from our Download Center at:
http://www.haivision.com/download-center/

NOTE All customers may access the Download Center; however, a login is required. If
you do not have a login, select the link to create an account.

http://www.haivision.com/download-center/
mailto:infodev@haivision.com
http://www.haivision.com

 About This Guide
Related Documents

Furnace API Integrator’s Guide, v6.6, Issue 01 7

Related Documents

In addition to this integrator’s guide, the following document(s) are also available through
Haivision’s Download Center (see link above):

• Furnace Administration Guide

• InStream User’s Guide
• Furnace Data Ports and Security Policy
• Mantaray Administrator’s Guide
• Stingray User’s Guide

Service Support

Haivision Network Video is committed to providing the service support and training
needed to install, manage, and maintain your Haivision equipment.

For more information regarding service programs, training courses, or for assistance with
your support requirements, contact Haivision Technical Support via our Support Portal on
our website at: http://www.haivision.com/support-portal-home

Document Conventions

The following document conventions are used throughout this guide.

TIP The light bulb symbol highlights suggestions or helpful hints.

NOTE Indicates a note, containing special instructions or information that may apply only
in special cases.

IMPORTANT Indicates an emphasized note. It provides information that you should
be particularly aware of in order to complete a task and that should not be
disregarded. IMPORTANT is typically used to prevent loss of data.

http://www.haivision.com/support-portal-home

 About This Guide
Document Conventions

Furnace API Integrator’s Guide, v6.6, Issue 01 8

CAUTION Indicates a potentially hazardous situation which, if not avoided, may result in
damage to data or equipment, or minor to moderate injury. It may also be used to alert
against unsafe practices.

Furnace API Integrator’s Guide, v6.6, Issue 01 9

CHAPTER 1: Introduction

Haivision’s Furnace API is a Representational State Transfer (REST) API. REST is a style
of software architecture for distributed hypermedia systems such as the World Wide Web.
REST provides a set of rules (constraints) to which an architecture should conform. This is
in contrast to an “unconstrained architecture” in which services are free to define their own
idiosyncratic interfaces.

The most important aspect of REST is a uniform interface between components, allowing
them to communicate in a standard way. Requests use the standard HTTP methods. GET,
PUT and DELETE requests can do only what is expected.

The effect is that your services are accessible through standard tools, and it is safe for other
services and utilities to use yours in ways you did not predict.

NOTE To help keep applications stable with future versions of the API, please allow for,
and ignore, unknown XML elements. When expanding the API, it may be necessary for
Haivision to add elements to existing XML elements (without changing existing elements).

TIP All communication with the REST API is done through the portal server. Your base
URI for requests should match the root of your portal server. In the examples, replace
“https://example.haivision.com/” with the address of your portal server.

REST Informational Links

Following are some useful external references to learn more about REST:

• Architectural Styles and the Design of Network-based Software Architectures
(dissertation by Roy Fielding)

• Representational State Transfer (Wikipedia entry)
• REST in Plain English
• Explaining REST
• How to Create a REST Protocol
• REST Anti-Patterns

http://www.ics.uci.edu/~fielding/pubs/dissertation/abstract.htm
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://rest.blueoxen.net/cgi-bin/wiki.pl?RestInPlainEnglish
http://www.25hoursaday.com/weblog/2008/08/17/ExplainingRESTToDamienKatz.aspx
http://www.xml.com/pub/a/2004/12/01/restful-web.html
http://www.infoq.com/articles/rest-anti-patterns

Chapter 1: Introduction
URIs for REST Resources

Furnace API Integrator’s Guide, v6.6, Issue 01 10

URIs for REST Resources

NOTE “foobar” is a place holder name intended to represent whatever is being
discussed.

URI Structure

Given a list of foobars, the following URI scheme provides access to the list of foobar
entities and to a particular foobar:

URI Method Notes

/foobars GET This returns a collection of the foobar
entities. By default items in the list are a
minimal representation of a foobar entity.
Note that we use the plural for the
directory name.

/foobars POST This creates a foobar entity and returns a
link to entity in the form /foobars/foobar-
{id}.

/foobars/foobar-{id} GET This returns the full content of the foobar
identified by the given id. Note that we use
the singular for the entity name.

/foobars/foobar-{id} PUT Update the contents of a foobar entity.

/foobars/foobar-{id} DELETE Delete the foobar entity.

Sub-elements of a foobar entity are made available as sub-resources of /foobars/foobar-
{id}, e.g.:

/foobars/foobar-{id}/bazs/baz-{id}/bloops/bloop-{id}

NOTE The ID in each URI comes from the collection preceding it. When a resource
contains multiple IDs, the notation does not imply that the IDs are identical. Refer to the
collection to get the ID.

Chapter 1: Introduction
OAuth

Furnace API Integrator’s Guide, v6.6, Issue 01 11

OAuth

The Furnace API uses the OAuth (Open Authorization) standard for authorization when a
third party application requests access. As defined in the OAuth 1.0 Protocol Abstract:

“OAuth provides a method for clients to access server resources on behalf of a resource
owner (such as a different client or an end-user). It also provides a process for end-users
to authorize third-party access to their server resources without sharing their credentials
(typically, a username and password pair), using user-agent redirections.”

OAuth is a standardized authentication mechanism that works by signing the HTTPS
request using a shared secret. Furnace uses a “two-legged” implementation to control
which applications can make use of the API on the Furnace. Two-legged OAuth does not
provide user authentication, it only validates an application's identity.

Implementing OAuth

Implementing OAuth for the Furnace API is relatively simple and straightforward.
However, it requires that both the server and client side behave the same way. Therefore, it
is important to take care to avoid even minor mistakes, which can lead to authentication
errors. The instructions which follow provide an overview of the signature process. Please
refer the Interactive OAuth Guide listed under “OAuth Informational Links”, which walks
you through an interactive example of OAuth signature construction. Another great
resource for understanding OAuth in action is the REST Client for Firefox, also listed
below.

In both cases, leave the Accessor Secret, Token and Token Secret fields blank. The
REST client allows you to manually enter the nonce (number used once, in this case a
random string) and timestamp so you can verify that your signature is accurate. The instruc-
tions below outline how to sign a request, and store it in an HTTP header. The Furnace API
also supports the signature information as part of the query string, or part of the post data,
but the header is preferred.

NOTE Usage of Oauth with the Furnace API requires that calls be sent via HTTPS
protocol.

OAuth Informational Links

• Official Site (http://oauth.net/ Official Site)

• Oauth RFC (http://tools.ietf.org/html/rfc5849 Oauth RFC (official spec))
• Authoritative Guide to OAuth (http://hueniverse.com/oauth/guide/)

http://oauth.net/
http://tools.ietf.org/html/rfc5849
http://hueniverse.com/oauth/guide/

Chapter 1: Introduction
OAuth

Furnace API Integrator’s Guide, v6.6, Issue 01 12

• Interactive OAuth Guide (http://hueniverse.com/2008/10/beginners-guide-to-oauth-
part-iv-signing-requests/ Interactive OAuth Guide (Use “Create Your Own” to see the
full details))

• Simple OAuth Sample
(http://developer.yahoo.com/blogs/ydn/posts/2010/04/a_twolegged_oauth_serverclie
nt_example/ Simple OAuth Sample)

• OAuth Libraries (http://oauth.net/code/ OAuth Libraries)
• RESTClient for Firefox that supports OAuth (https://addons.mozilla.org/en-

US/firefox/addon/restclient/) (Only fill in consumer key and consumer secret to
authenticate)

Preparing for OAuth

The preliminary steps are done using the VF Admin module. First, from the Configuration
page, you set the API Version to 2.0 to enable authentication. Please refer to the Adminis-
tration Guide (Chapter 4: “VF Admin”) for this procedure.

Then, from the Credential Manager page, you create the credential (i.e., a key or secret
pair). Please refer to the Administration Guide (Chapter 3: “Initial System Setup”) for this
procedure.

When you have retrieved this API credential, you can proceed to the next step.

Generating the Request Base String

The next step is to generate OAuth headers.

1. Generate OAuth parameters.

a. Generate a random nonce and store it as oauth_nonce.

NOTE This value should not be reused and should not be sequential.

b. Generate a timestamp and store it as oauth_timestamp.

c. Set oauth_consumer_key to the Consumer Key retrieved from the VF Admin
Credential Manager (see “Preparing for OAuth” above).

d. Set oauth_signature_method to “HMAC-SHA1”. (No other methods are cur-
rently supported.)

2. Gather all parameters:

• OAuth parameters
• GET parameters
• POST parameters

3. Encode the parameters using UTF-8 standards/functions.

http://hueniverse.com/2008/10/beginners-guide-to-oauth-part-iv-signing-requests/
http://developer.yahoo.com/blogs/ydn/posts/2010/04/a_twolegged_oauth_serverclient_example/
http://oauth.net/code/
https://addons.mozilla.org/en-US/firefox/addon/9780/

Chapter 1: Introduction
OAuth

Furnace API Integrator’s Guide, v6.6, Issue 01 13

4. Encode the parameters using URL standards/functions.

5. Normalize parameters (sort parameters alphabetically per
http://tools.ietf.org/html/rfc5849#section-3.4.1.3.2).

6. Concatenate parameters together with an ampersand “&” between each, similar to
HTTP GET requests.

Signing a Request with OAuth:

The next step is to generate the oauth_signature and place it in the Authorization header.

1. Generate the signature base string:

The base string is a combination of:
• Encoded HTTP request method (GET, POST, PUT, DELETE, etc.)

(http://tools.ietf.org/html/rfc5849#section-3.6)
• Ampersand
• Base URI (e.g.: https://example.haivision.com/apis/assets) (Leave off the query

portion)
• Ampersand
• Request base string (Construction noted above)

2. Encrypt the base string using HMAC-SHA1:

• The result should be base64 encoded.
• Store the result as oauth_signature.

3. Place OAuth values (oauth_signature, oauth_consumer_key, oauth_nonce,
etc.) in the Authorization header, e.g.:

Authorization: OAuth oauth_consumer_key="",oauth_token=
"",oauth_nonce="",oauth_timestamp="0",oauth_signature_method=
"HMAC-SHA1",oauth_version="1.0",oauth_signature=
"mrhdcH0WE%2BD%2FPrETh%2Bn1Gw4PSXc%3D"

Chapter 1: Introduction
REST API Responses

Furnace API Integrator’s Guide, v6.6, Issue 01 14

REST API Responses

Responses to a request consist of two elements: the HTTP status code and the response
content. An application can act initially upon the HTTP status code (sensing success or
failure) and then act specifically upon the data of the response content.

Response content is usually returned as application/xml data, with the root level of
<response>.

Within the <response>, the content is context-specific. Individual API functions specify
the type of response content later in this documentation.

If there is a problem processing or executing the request, the response content may contain
an <error> element with a more application-specific error code.

For more details on the HTTP and <error> responses, see “Error Codes” on page 74.

Chapter 1: Introduction
REST API Responses

Furnace API Integrator’s Guide, v6.6, Issue 01 15

Example Success Response

HTTP/1.1 200 OK
Content-Type: application/xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>

<recording>
<id>99fe1d68-9ed6-4813-883b-1044f77a6b63</id>
<sourceUrl>udp://239.19.3.100:4900/;raw=1</sourceUrl>
<state>RECORDED</state>
<duration>3</duration>
<maxDuration>654</maxDuration>
<progress>0.00</progress>
<metadata>

<title>The Goonies</title>
<description>A group of kids embark on a wild adventure after finding

a pirate treasure map.</description>
</metadata>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/recorders/recorder-003018aafe23-
4909-0/recordings/recording-99fe1d68-9ed6-4813-883b-
1044f77a6b63"/>

<link rel="recorder" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-003018aafe23-
4909-0"/>

<link rel="hotmarks" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-003018aafe23-
4909-0/recordings/recording-99fe1d68-9ed6-4813-883b-
1044f77a6b63/hotmarks"/>

<link rel="publishes" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-003018aafe23-
4909-0/recordings/recording-99fe1d68-9ed6-4813-883b-
1044f77a6b63/publishes"/>

<link rel="reviews" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-003018aafe23-
4909-0/recordings/recording-99fe1d68-9ed6-4813-883b-
1044f77a6b63/reviews"/>

</recording>
</response>

Chapter 1: Introduction
REST API Responses

Furnace API Integrator’s Guide, v6.6, Issue 01 16

Example Error Response

HTTP/1.1 400 Bad Request
Content-Type: application/xml

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>

<error>
<code>1011</code>
<message>Input XML data is poorly formatted</message>

</error>
</response>

Sorting Response Content

Please note that the contents of a given container (for example, the tags within a
<recording>, or the <recording> elements inside a <recorder>) are not guaranteed to
be returned in any particular order.

To avoid unnecessary errors, it should not be assumed that the order of elements will follow
those in the example (for example, <id> tags may not be the first tag in an element.)

If any sorting needs to be done (for example, to process <hotmark> items in chronolog-
ical order), then this should be carried out by the application.

Chapter 1: Introduction
Diagnostics

Furnace API Integrator’s Guide, v6.6, Issue 01 17

Diagnostics

In /opt/haivision/usr/www/html/apis/index.php, there is a $diagnostics variable
defined at the top of the page. To enable diagnostics, set this variable to true.

When enabled, there will be a diagnostics XML entity similar to the following along with
the regular response:

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>

<diagnostics>
<systemTime>60.037</systemTime>
<userTime>9.653</userTime>

</diagnostics>

...

</response>

• <userTime> is the database execution time (or other execution time) measured in
milliseconds

• <systemTime> is the total time spent during the API call measured in milliseconds

Chapter 1: Introduction
XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 18

XML Entities

Each of the API references below contains details about the specific XML entities used.

NOTE {foobarID} is used throughout these examples to denote the unique identifiers
referenced within the XML data. Keep in mind that this is not the syntax used in the actual
results for these elements.

In general a request for a list of resources (/apis/resources) will return XML such as:

<resources>
<resource>

<id>abc</id>
</resource>
<resource>

<id>xyz</id>
<resource>

</resources>

A request for a single resource (/apis/resources/resource-xyz) will return XML such as:

<resource>
<id>xyz</id>

</resource>

Generic entities you may come across are as follows:

<error>

<error>
<code>1011</code>
<message>Input XML data is poorly formatted</message>

</error>

Chapter 1: Introduction
XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 19

<link>

<link rel="self" type="application/xml" href=
"https://example.haivision.com/apis/demos/demo-{demoID}"/>

<link rel="publishes" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/publishes"/>

• rel: describes the relationship of the link to the current entity. Values vary depending
on context.

• type: Content-Type of the linked data
• href: REST-navigable link to the indicated entity

Furnace API Integrator’s Guide, v6.6, Issue 01 20

CHAPTER 2: API Reference

This API command reference lists and describes the available resources for the Furnace
API.

Topics In This Chapter

Summary of Furnace API Resources . 21
Demo Resources . 22

Demo XML Entities . 22
Demo API Endpoints . 22

Asset Resources . 25
Asset XML Entities . 25
Asset API Endpoints . 26

Client Resources . 31
Client XML Entities . 31
Client API Endpoints . 32

Command Resources . 36
Command XML Entities . 36
Command API Endpoints . 41

Program Resources . 42
Program XML Entities . 42
Program API Endpoints . 42

Recording Resources . 44
Recording XML Entities . 44
Recording API Endpoints . 48

Recorder Resources . 57
Recorder XML Entities . 57
Recorder API Endpoints . 58

Station Resources . 62
Station XML Entities . 62
Station API Endpoints . 64

Volume Resources . 71
Volumes XML Entities . 71
Volumes API Endpoints . 71

Chapter 2: API Reference
Summary of Furnace API Resources:

Furnace API Integrator’s Guide, v6.6, Issue 01 21

Summary of Furnace API Resources

The Furnace API consists of resources divided into the following categories:

Category Description

Demo Resources Use to explore the API in “demo” mode.

Asset Resources For working with assets, such as video clips.

Client Resources For working with clients connected to your Furnace system.

Command Resources For executing commands on your Furnace system.

Program Resources To get information about the scheduled programs in the
system.

Recording Resources For managing the output of a recorder process.

Station Resources For managing stations/channels.

Recorder Resources For managing the process of recording a video stream.

Volume Resources For managing storage.

For a basic description of the XML entities referenced in these sections, see “XML
Entities” on page 18.

“Endpoints” vs. “Methods”

In order to use this reference, keep in mind the following definitions:

• An endpoint is a URI (Uniform Resource Identifier) that points to a function or
operation provided by the API, e.g., /apis/demos.

• A method, for the purposes of this document, refers to the HTTP methods GET, PUT,
DELETE, or POST. An HTTP method acts on a Furnace API endpoint.

Chapter 2: API Reference
Demo Resources: Demo XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 22

Demo Resources

The demos API is provided for testing purposes to help integrators become familiar with
the API interaction process without touching any live components. It is designed to demon-
strate the API, i.e., to allow you to make changes and test your own tools without affecting
the system at large.

Demo XML Entities

A demo entity consists of two elements: a “name” and a “value”. A unique ID will be
generated upon creation (using the POST method on /apis/demos – see below).

<demo>

<demo>
<id>{demoID}</id>
<name>myName</name>
<value>myValue</value>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/demos/demo-0"/>
</demo>

Demo API Endpoints

/apis/demos

HTTP Method: GET

• Description: Gets a list of all <demo> entities.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <demos> entity, containing one or more <demo> entities.

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

Chapter 2: API Reference
Demo Resources: Demo API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 23

HTTP Method: POST

• Description: Creates a new <demo> entity.

• Media Types:
• application/xml

• Input Data:
• <demo> entity containing at least one of the following tags:

• <name>

• <value>

• Return Data:
• <link> entity referencing the newly added entry

• HTTP Return Codes:
• 201: Request was successful.
• 400: Client request is bad.
• 500: Server error.

/apis/demos/demo-{id}

HTTP Method: GET

• Description: Gets the demo entity specified by {id}.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <demos> entity, containing one <demo> entity.

• HTTP Return Codes:
• 200: Desired id found.
• 404: Desired id not found.

Chapter 2: API Reference
Demo Resources: Demo API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 24

HTTP Method: PUT

• Description: Updates the demo entity specified by {id}.

• Media Types:

• application/xml

• Input Data:
• none

• Return Data:
• <link> entity referencing the newly updated demo entity

• HTTP Return Codes:
• 200: Update is successful.
• 400: Client request is bad.
• 500: Server error.

HTTP Method: DELETE

• Description: Deletes the demo entity specified by {id}.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <link> entity to the parent level of the /demos API

• HTTP Return Codes:
• 200: Update is successful.
• 400: Client request is bad.
• 500: Server error.

Chapter 2: API Reference
Asset Resources: Asset XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 25

Asset Resources

The assets API is an interface to the assets published in the Furnace system. Currently only
queries are supported.

Asset XML Entities

<asset>

<asset>
<id>9c4fe054-50fe-4c71-a37f-8e437286c03d</id>
<title>Wildlife</title>
<description>Wildlife</description>
<runtime>139</runtime>
<created>20080815</created>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/assets/asset-9c4fe054-50fe-4c71-
a37f-8e437286c03d"/>

<link rel="thumbnail" type="image/png" href=
"https://example.haivision.com/thumbnail.php?9c4fe054-50fe-4c71-a37f-
8e437286c03d&width=90&height=68"/>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/9c4fe054-50fe-4c71-a37f-
8e437286c03d"/>

<tags>
<tag>Classroom</tag>
<tag>Nurses</tag>
<tag>Students</tag>

</tags>
<metadata>

<vfa_type>offline</vfa_type>
<vfa_title_brief>Wildlife</vfa_title_brief>
<vfa_comment>Aaron</vfa_comment>
<uuid>9c4fe054-50fe-4c71-a37f-8e437286c03d</uuid>
<hotmarks>

<hotmark>
<time>30000</time>
<title>My HotMark</title>

<hotmark>
 </hotmarks>

</metadata>
</asset>

• <created> described creation date as YYYYMMDD. This tag is not required to have
content (<created/> tag only is valid).

• <link rel=“thumbnail”> provides the URL of the PNG thumbnail associated with
this video asset. If no thumbnail was embedded, this link will not be available.

• <link rel=“launch_link”> provides a url that can be used to launch this video asset.

Chapter 2: API Reference
Asset Resources: Asset API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 26

• <asset> as returned will contain a <tags> element, if that asset has Tags specified
on it. Inside <tags> will be <tag> elements for each tag on the asset.

The following elements are returned when directly accessing an asset at /apis/assets/asset-
{id} and are not included when getting an asset list from /apis/assets:

• <metadata> is metadata contained within the asset file. The exact contents can
change depending on what tags are present inside the file's metadata.

• <hotmark> contains the title and time in milliseconds

Asset API Endpoints

/apis/assets

HTTP Method: GET

• Description: Retrieves a list of published assets. Results are paginated and supports
keyword query on title and description.

• URL Parameters:
• page (optional)

The page number to access. Default page is 1.
• size (optional)

The maximum number of results to return. Default size is 100. Size can range from
1 to 100.

• Search Pattern (optional)
• q Simple search string. Search is performed on the asset title, description and

tags.
• c Complex search string. Value can be either “and” or “or”, indicating how to

combine search entries. The value is case insensitive.
If c is used, q is ignored. Any additional query parameters are treated as search
entries. The name of a query parameter indicates the field to match. Any field
from the metadata is acceptable. The following fields are also accepted:
• title
• description
• tag
• runtime
• created

• The complex query supports equal, not equal, like and not like.
• Equal is the normal mode.
• Not equal is indicated by an exclamation point (!) following the equal sign.
• Like is indicated with a tilde (~) following the equal sign.

Chapter 2: API Reference
Asset Resources: Asset API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 27

• Not like is indicated with a carrot (^) following the equal sign.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• An <assets> entity, containing one or more partial <asset> entities (without

<metadata> tag).

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/assets/?page=1&size=2&q=2mb

Chapter 2: API Reference
Asset Resources: Asset API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 28

• Example Response:

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>
<assets numResults="8" pageSize="2" page="1">

<asset>
<id>b863515b-85f5-4f71-af5f-0e67d06b0949</id>
<title>2Mb720x480p30</title>
<description>2Mb720x480p30</description>
<runtime>300</runtime>
<created>20080815</created>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/assets/asset-b863515b-85f5-4f71-
af5f-0e67d06b0949"></link>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/b863515b-85f5-4f71-af5f-
0e67d06b0949"></link>

<tags>
<tag>Classroom</tag>
<tag>Nurses</tag>
<tag>Students</tag>

</tags>
</asset>
<asset>

<id>85625601-9aab-4624-b929-2b6e86fbdc7d</id>
<title>2mb1280x720p1fps</title>
<description>2mb1280x720p1fps</description>
<runtime>300</runtime>
<created>20080815</created>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/assets/asset-85625601-9aab-
4624-b929-2b6e86fbdc7d"></link>

<link rel="thumbnail" type="image/png" href=
"https://example.haivision.com/thumbnail.php?85625601-9aab-4624-
b929-2b6e86fbdc7d"></link>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/85625601-9aab-4624-b929-
2b6e86fbdc7d"></link>

</asset>
</assets>

• Example Complex Request:

https://server/apis/assets/?page=1&size=2&c=or&title=Sandlot

• Example Complex Request:

https://server/apis/assets/?page=1&size=2&c=or&title=!Sandlot

• Example Complex Request:

https://server/apis/assets/?page=1&size=2&c=and&title=
~Sand&vfa_nu_creator=Fox

Chapter 2: API Reference
Asset Resources: Asset API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 29

/apis/assets/asset-{id}

HTTP Method: GET

• Description: Retrieves information for a specific asset.

• URL Parameters:
• none.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• Complete <asset> entity (including <metadata> element).

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/assets/asset-85625601-9aab-4624-
b929-2b6e86fbdc7d

Chapter 2: API Reference
Asset Resources: Asset API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 30

• Example Response:

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>

<asset>
<id>85625601-9aab-4624-b929-2b6e86fbdc7d</id>
<title>2mb1280x720p1fps</title>
<description>2mb1280x720p1fps</description>
<runtime>300</runtime>
<created>20080815</created>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/assets/asset-85625601-9aab-
4624-b929-2b6e86fbdc7d"></link>

<link rel="thumbnail" type="image/png" href=
"https://example.haivision.com/thumbnail.php?85625601-9aab-4624-
b929-2b6e86fbdc7d"></link>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/85625601-9aab-4624-b929-
2b6e86fbdc7d"></link>

<metadata>
<uuid>85625601-9aab-4624-b929-2b6e86fbdc7d</uuid>
<vfa_type>offline</vfa_type>
<hotmarks>

<hotmark>
<time>10000</time>
<title>HotMark_A</title>

 <hotmark>
 </hotmarks>

</metadata>
</asset>

</response>

Chapter 2: API Reference
Client Resources: Client XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 31

Client Resources

The clients API allows you to view clients that are currently connected to the system.

Client XML Entities

<client>

<client>
<instance>8f36ef57-a686-4221-8fe9-7013322a932f</instance>
<session>a6f1601d-844b-444c-86be-e913fa74736b</session>
<app>INSTREAM</app>
<app_version>5.8.0</app_version>
<macaddr>33:33:33:33:33:33</macaddr>
<ipaddr>3.3.3.3</ipaddr>
<hostname>example.haivision.com</hostname>
<platform>OS X</platform>
<settings>0</settings>
<url>uuid:68f8deca-59f7-11b6-9df0-000a95d96580</url>
<callsign/>
<channel>0</channel>
<packets_corrected>0</packets_corrected>
<packets_uncorrected>0</packets_uncorrected>
<link rel="self" type="application/xml"href=

"https://example.haivision.com/apis/clients/client-8f36ef57-a686-4221-
8fe9-7013322a932f"/>

</client>

• appID is one of the following: UNKNOWN, INSTREAM, EDITOR, PILOT,
MONITOR, ARCHIVE, COMMANDER, NVR, DECODER.

• platform is one of the following: UNKNOWN, Windows, OS X, Linux, Solaris, STB,
Makito.

Chapter 2: API Reference
Client Resources: Client API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 32

Client API Endpoints

/apis/clients

HTTP Method: GET

• Description: Gets the list of clients with details.

• URL Parameters:

• page (optional)
The page number to access. Default page is 1.

• size (optional)
The maximum number of results to return. Default size is 100. Size can range from
1 to 100.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <clients> element containing multiple <client> elements.

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/clients/?page=1&size=2

Chapter 2: API Reference
Client Resources: Client API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 33

HTTP Method: Example Response:

<?xml version"1.0" encoding="ISO-8859-1"?>
<response>

<clients numResults="2" pageSize="100" page="1">
<client>

<instance>8f36ef57-a686-4221-8fe9-7013322a932f</instance>
<session>a6f1601d-844b-444c-86be-e913fa74736b</session>
<app>INSTREAM</app>
 <app_version>5.8.0</app_version>
 <macaddr>33:33:33:33:33:33</macaddr>
 <ipaddr>3.3.3.3</ipaddr>
 <hostname>example.haivision.com</hostname>
 <platform>OS X</platform>
 <settings>0</settings>
 <url>uuid:68f8deca-59f7-11b6-9df0-000a95d96580</url>
 <callsign/>
 <channel>0</channel>
 <packets_corrected>0</packets_corrected>
 <packets_uncorrected>0</packets_uncorrected>
 <link rel="self" type="application/xml"

href="https://example.haivision.com/apis/clients/client-8f36ef57-a686-
4221-8fe9-7013322a932f"/>

</client>
<client>

<instance>2336ef57-a686-4221-8fe9-7013322a932f</instance>
<session>a6f1601d-844b-444c-86be-e913fa74736b</session>
<app>INSTREAM</app>
<app_version>5.8.0</app_version>
<macaddr>33:33:33:33:33:33</macaddr>
<ipaddr>3.3.3.3</ipaddr>
<hostname>example.haivision.com</hostname>
<platform>OS X</platform>
<settings>0</settings>
<url>uuid:68f8deca-59f7-11b6-9df0-000a95d96580</url>
<callsign/>
<channel>0</channel>
<packets_corrected>0</packets_corrected>
<packets_uncorrected>0</packets_uncorrected>
<link rel="self" type="application/xml"

href="https://example.haivision.com/apis/clients/client-2336ef57-a686-
4221-8fe9-7013322a932f"/>

</client>
</clients>

</response>

Chapter 2: API Reference
Client Resources: Client API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 34

/apis/clients/client-{id}

HTTP Method: GET

• Description: Gets the details of a client.

• URL Parameters:
• none

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <client> element.

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/clients/client-91605d67-829b-4034-
b2af-5169c2358341

Chapter 2: API Reference
Client Resources: Client API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 35

• Example Response:

<?xml version="1.0" encoding="ISO-8859-1"?>
<response>

<client>
<id>91605d67-829b-4034-b2af-5169c2358341</id>
<session_id>a818b72c-7ded-4622-abe6-111bc4f8af5b</session_id>
<app_id>INSTREAM</app_id>
<app_version>5.8.0</app_version>
<mac_address>00:11:22:33:44:AA</mac_address>
<ip_address>192.168.1.101</ip_address>
<hostname>tester.haivision.com</hostname>
<platform>OS X</platform>
<settings>0</settings>
<url>uuid:00015f91-0000-0000-0000-000000000000</url>
<callsign>Playback1</callsign>
<channel>100</channel>
<packets_corrected>0</packets_corrected>
<packets_uncorrected>0</packets_uncorrected>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/clients/client-91605d67-829b-
4034-b2af-5169c2358341"></link>

</client>
</response>

Chapter 2: API Reference
Command Resources: Command XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 36

Command Resources

The commands API allows you to issue commands to clients connected to the system.

IMPORTANT Not all client applications respond to all commands.

Command XML Entities

<command>

Below are the types of commands. The first is a simple action requiring only a type and a
value. The others are examples requiring more complex parameters. Multiple actions can
be placed inside <actions>.

HTTP Method: Simple Actions:

Available actions (type <value>):

• lockinterface <on|off>

• channel <number>

• station <id>

• jump

• guide <on|off>

• mute <on|off>

• volume <0-100>

• cc <0|2|4>

• 0 - CC1
• 2 - CC3
• 4 - off

<command>
<actions>

<action type="volume">
<value>100</value>

</action>
</actions>

</command>

Chapter 2: API Reference
Command Resources: Command XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 37

• ontop <on|off>

• dashboard <on|off>

• thumbnail <on|off>

• minimize <on|off>

• activate

• show <on|off>

• fullscreen <on|off>

• power <on|off>

• sleeptimer <minutes>

• hdtv <SD|720p|1080i|1080p>

• settvmode <format>

• delay <ms>

• url <url|uuid> [use to launch a specific VOD asset or URL on a device]

• URL (e.g., udp://239.10.10.10:4900) or

• UUID identifier (uuid:xxxx-xxxx-xxxx-xxxxxxx)

• quit

Chapter 2: API Reference
Command Resources: Command XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 38

HTTP Method: Video Overlay Message:

This action causes an overlay to display in supporting clients.

Available parameters for Video Overlay Message:

• Duration - Time in seconds

• Priority - Message Priority 0=lowest, 254=highest

• Text - Message to display

• Font Size - Font size in pixels

• Brightness - Brightness value 0-255

• Color - Text Color

• Position - Location on screen
• 0 - top left
• 1 - top center
• 2 - top right
• 3 - middle left
• 4 - middle center
• 5 - middle right
• 6 - bottom left
• 7 - bottom center
• 8 - bottom right

• Scroll Speed - Rate the text scrolls across the screen. Default: 44.0

<command>
<actions>

<action type="message/video">
<duration>30</duration>
<priority>7</priority>
<text>This is a test of the message overlay.</text>
<font_size>32</font_size>
<brightness>255</brightness>
<color red= "255" green="2550" blue="255" alpha="255"/>
<position>7</position>
<scroll_speed>44.0</scroll_speed>

</action>
</actions>

</command>

Chapter 2: API Reference
Command Resources: Command XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 39

HTTP Method: Dialog Message:

This causes a dialog to pop up in supporting clients.

Available parameters for Dialog Message:

• Duration - Time in seconds

• Priority - Message Priority 0=lowest, 254=highest

• Text - Message to display

• Title - Title for dialog box

HTTP Method: Network Config:

<command>
<actions>

<action type="message/dialog">
<duration>30</duration>
<priority>7</priority>
<text>This is a test of the message dialog.</text>

</action>
</actions>

 </command>

<command>
 <actions>
 <action type="network_config">
 <bootproto>static</bootproto>
 <ipaddress>192.168.0.3</ipaddress>
 <netmask>255.255.255.0</netmask>
 <gateway>192.168.0.1</gateway>
 <dns1>192.168.0.1</dns1>
 <dns2>192.168.0.2</dns2>
 </action>
 </actions>
 <restrict_to>
 <conditions operator='OR'>
 <condition type="instance">
 <value>{id}</value>
 </condition>
 </conditions>
 </restrict_to>
</command>

Chapter 2: API Reference
Command Resources: Command XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 40

This action changes the network configuration on supporting clients. If bootproto is set to
“dhcp”, the other fields can be left blank. An “instance” restriction is required for this
command to operate correctly. This command only targets set-top boxes.

Available parameters for Network Config:

• bootproto

• dhcp (if set, all other parameters can be left out)

• static

• ipaddress

• netmask

• dns1

• dns2

NOTE The “restrict_to” block is supported on all commands, not just the “network_config”
command. The “restrict_to” block supports the following “type” parameters. Their
values should match the responses in the client’s API.

• app

• session

• instance

• callsign

• channel

• ipaddr

• macaddr

• platform

With the exception of the “instance” type, “restrict_to” is limited to a single condition in
the current release. However, the “conditions” block is required when “restrict_to” is
used. The operator on the “restrict_to” block MUST be set to “OR”. If “restrict_to” is not
specified, the command goes out to all clients.

Chapter 2: API Reference
Command Resources: Command API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 41

Command API Endpoints

/apis/commands

HTTP Method: POST

• Description: Issues a command.

• URL Parameters:
• None

• Media Types:
• application/xml

• Input Data:
• <command> element

• Return Data:
• None.

• HTTP Return Codes:
• 201: Request was successful.
• 400: Request is bad.
• 500: Server error.

• Example Request:

https://example.haivision.com/apis/commands POST DATA:

<command>
<actions>

<action type="volume">
<value>255</value>

</action>
<action type="channel">

<value>100</value>
</action>

</actions>
</command>

Chapter 2: API Reference
Program Resources: Program XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 42

Program Resources

The program API allows you to get information about the scheduled programs in the
system.

NOTE Use the schedules request in the stations API to find programs. There is no
collection containing all programs. For details, see “Station API Endpoints” on page 64.

Program XML Entities

<program>

<program>
<id>b3692d4a-4150-4326-acfa-c420c145aa71</id>
<title>rule mere lost</title>
<description>region lot fortune</description>
<numTracks>2</numTracks>

</program>

Program API Endpoints

/apis/programs/program-{id}

HTTP Method: GET

• Description: Gets information about a scheduled program.

• URL Parameters:

• none

• Media Types:

• application/xml

• Input Data:
• none

• Return Data:
• <program> element

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

Chapter 2: API Reference
Program Resources: Program API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 43

• Example Request:

https://example.haivision.com/apis/programs/program-b3692d4a-4150-
4326-acfa-c420c145aa71

• Example Response:

<?xml version="1.0" encoding="UTF-8" ?>
<response>

<program>
<id>b3692d4a-4150-4326-acfa-c420c145aa71</id>
<title>rule mere lost</title>
<description>region lot fortune</description>
<numTracks>2</numTracks>

</program>
</response>

Chapter 2: API Reference
Recording Resources: Recording XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 44

Recording Resources

The recording API is an interface to VF NVR to manage recordings in the NVR system.

Recording XML Entities

<recording>

<recording>
<id>{recorderID}</id>
<sourceUrl>vftp://239.1.2.3:4900</sourceUrl>
<state>RECORDED</state>
<duration>1600</duration>
<maxDuration>100</maxDuration>
<progress>0.00</progress>
<metadata>

<title>myTitle</title>
<description>myDescription</description>

</metadata>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}"/>

<link rel="recorder" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-{recorderID}"/>

<link rel="hotmarks" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}/hotmarks"/>

<link rel="publishes" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}/publishes"/>

<link rel="reviews" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}/reviews"/>

</recording>

• <duration> and <maxDuration> are in seconds.

• <state> may be one of the following: RECORDING, PAUSED, FINALIZING,
RECORDED, REVIEWING, PUBLISHING.

• <progress> represents the current progress of this recording’s publish (if a publish
is active.) Ranges from 0.00 to 1.00.

Chapter 2: API Reference
Recording Resources: Recording XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 45

<review>

<review>
<id>9b876a02-92cc-4047-bdce-9d644a63510f</id>
<link rel="recorder" type="application/xml" href=

"https://example.haivision.com/apis/recorders/recorder-00505637c7b0-
4909-0"></link>

<link rel="recording" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-00505637c7b0-
4909-0/recordings/recording-9b876a02-92cc-4047-bdce-
9d644a63510f"></link>

<link rel="self" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-00505637c7b0-
4909-0/recordings/recording-9b876a02-92cc-4047-bdce-
9d644a63510f/reviews/review-9b876a02-92cc-4047-bdce-
9d644a63510f"></link>

<outputUrl>{outputUrl}</outputUrl>
</review>

{URL} specifies the streaming URL for the review. This may take one of two forms:

• A streaming output URL, multicast or unicast:
e.g., vftp://239.19.3.100:4900

-or-

vftp://192.168.1.100:4900

• A “resource” access URL allowing for the VoD-style streaming of the asset to an
InStream player via command-line arguments:
e.g., vfms://example.haivision.com/{ID}

NOTE The “recorder” and “self” link is not available in Version 1.0 API.

The outputURL will only appear in response to a POST.

Chapter 2: API Reference
Recording Resources: Recording XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 46

<publish> resource

<publish>
<id>{publishID}</id>
<progress>0.26</progress>

<link rel="recorder" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-{recorderID}"/>

<link rel="recording" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}"/>

<link rel="self" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}/publishes/publish-
{publishID}"/>

</publish>

• The <publish> resource is an output, unlike <publish> POST resource (see below)
which is an optional input.

• <progress> represents the current progress of this publish. Ranges from 0.00 to 1.00.

Chapter 2: API Reference
Recording Resources: Recording XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 47

<publish> POST resource

<publish>
<volume>

<id>eff3c133-3f17-441f-a6a0-7509126f0a17</id>
</volume>

</publish>

• The <publish> POST resource is an optional input that may be used when creating
a publish resource to indicate a desired volume.

<hotmark>

<hotmark>
<id>{hotmarkID}</id>
<time>147000</time>
<title>MyHotmark</title>
<type>TAG</type>

<link rel="recorder" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-{recorderID}"/>

<link rel="recording" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}"/>

<link rel="self" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings/recording-{recordingID}/hotmarks/hotmark-
{hotmarkID}"/>

</hotmark>

• <time> is in milliseconds

• <type> may be one of: TAG (for normal HotMarks) or CHAPTER (for discontinuity/
Chaptermarks)

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 48

Recording API Endpoints

/apis/recordings

HTTP Method: GET

• Description: Gets a list of all recordings in the NVR Crash system.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <recordings> element containing multiple <recording> elements

• HTTP Return Codes:

• 200: Recordings are found.
• 404: No recordings found.

NOTE With API Version 1.0, you will not receive a 404 for an empty set of recordings.
The return code will be 200 and the response will have an empty <recordings> element.

HTTP Method: POST

• Description: Starts a recording on the specified recorder. Takes XML with
sourceUrl, maxDuration, title, and description elements.

• Media Types:
• application/xml

• Input Data:
• <recording> element containing the following tags:

• <sourceUrl>
• <maxDuration>
• <metadata>, containing: <title>, <description>
• Optionally, <tracks> containing one or more: <track> which contains an

<id> of the tracks to limit the number of tracks included in a multitrack
recording. If <tracks> is omitted, all tracks are recorded.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 49

• Return Data:

• <link> element to the newly created recording.
• <tracks> will be returned with an attribute “numberOfTracks” set to the total

number of tracks and an attribute “numberOfTracksRecording” set to the total
that could be recorded.
In addition, an attribute “licenseLimited” will be set to “true” or “false” to indi-
cate that the number of tracks requested is more than the license allows for a single
recording.
If “licenseLimited” is “false” and “numberOfTracks” is greater than
“numberOfTracksRecording,” this indicates that you do not have enough
recorders available.

• HTTP Return Codes:
• 201: Recording successfully started.
• 400: Client request is bad.
• 500: Server error.

NOTE The url can be specified in one of three formats:

vftp://10.10.10.10:4900
udp://10.10.10.10:4900
uuid:0001737d-0000-0000-0000-000000000000

Replace ip addresses and ports as necessary. The uuid format refers to a station. The
uuid can be found in the id field of the station record in the stations api.

/apis/recordings/recording-{id}

HTTP Method: GET

• Description: Gets the details of the requested recording.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <recording> element

• HTTP Return Codes:

• 200: Results found.
• 404: No results found.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 50

HTTP Method: PUT

• Description: Updates the recording with new data, and/or changes the state
(Pause/Resume).

• Media Types:
• application/xml

• Input Data:
• <recording> element, containing each of the following tags:

• <maxDuration>
• <metadata>, containing: <title> and/or <description>

and/or
• <state>, containing one of the following states, PAUSED or RECORDING

• Return Data:
• <link> element to the newly created recording.

• HTTP Return Codes:
• 200: Recording successfully updated.
• 400: Client request is bad.
• 500: Server error.

NOTE Setting the maxDuration <= the current recorded duration will immediately
“stop” the recording.

The id in the url is the relevant resource id. The two values should not be identical.

Updating title/description can be done during RECORDING/PAUSE/REVIEW state.
Updating duration/state can only be done during RECORDING/PAUSE

HTTP Method: POST

• Description: Stops the recording.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <link> element to the updated recording.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 51

• HTTP Return Codes:

• 200: Recording successfully stopped.
• 400: Client request is bad.
• 500: Server error.

HTTP Method: DELETE

• Description: Deletes the recording.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <link> element, linking to the <recorder> associated with this recording.

• HTTP Return Codes:
• 200: Recording successfully deleted.
• 400: Client request is bad.
• 500: Server error.

/apis/recordings/recording-{id}/hotmarks

HTTP Method: GET

• Description: Gets the list of all current HotMarks for this recording.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <hotmark> element containing multiple <hotmark> elements.

• HTTP Return Codes:
• 200: HotMarks are found.
• 404: No HotMarks found.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 52

HTTP Method: POST

• Description: Creates a new HotMark for the recording.

• Media Types:
• application/xml

• Input Data:
• partial <hotmark> element containing:

• <title> (required)
• <time> (optional, omit to place HotMark at current recording time)
• <type> (optional. TAG or CHAPTER, defaults to TAG)

• Return Data:
• <link> to the recording containing the new HotMark.

• HTTP Return Codes:
• 201: HotMark successfully created.
• 400: Client request is bad.
• 500: Server error.

/apis/recordings/recording-{id}/hotmarks/hotmark-{id}

HTTP Method: GET

• Description: Gets information about the desired HotMark.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <hotmark> element

• HTTP Return Codes:
• 200: Requested HotMark was found.
• 404: Requested HotMark not found.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 53

/apis/recordings/recording-{id}/publishes

HTTP Method: GET

• Description: Gets current publishes on this recording, if existing.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <publishes> element containing one <publish> element.

• HTTP Return Codes:
• 200: Publish was found.
• 404: No publish was found.

NOTE Currently only one publish per recording is supported.

HTTP Method: POST

• Description: Begins publishing the recording to the media server.

• Media Types:
• application/xml

• Input Data:

• (Optional) You can use a <publish> element to indicate a desired volume.

• Return Data:

• <link> to the recording being published.

• HTTP Return Codes:
• 202: Publish was successfully started.
• 400: Client request is bad.
• 500: Server error.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 54

/apis/recordings/recording-{id}/publishes/publish-{id}

HTTP Method: GET

• Description: Gets information on the specified publish event.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <publish> element.

• HTTP Return Codes:
• 200: Publish was found.
• 404: No publish found.

HTTP Method: DELETE

• Description: Stops publishing the recording and returns recording to RECORDED
state.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <link> element, linking to the <recording> associated with this publish.

• HTTP Return Codes:
• 200: Publish successfully canceled.
• 400: Client request is bad.
• 500: Server error.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 55

/apis/recordings/recording-{id}/reviews

HTTP Method: GET

• Description: Gets all the reviews for the specified recording.

• Media Types:

• application/xml

• Input Data:

• none

• Return Data:

• <reviews> element containing multiple <review> elements.

• HTTP Return Codes:
• 200: Reviews are found.
• 404: No reviews found.

HTTP Method: POST

• Description: Begins review on this recording.

• Media Types:
• application/xml

• Input Data:

• Optional:
• <review> element containing only an <outputUrl> tag specifying a multi-

cast or unicast address to stream to.
• If omitted, provides outputUrl for VoD-style viewing with InStream player

(vfms://example.haivision.com/{ID})

• Return Data:

• <review> element

• HTTP Return Codes:
• 201: Review was successfully started.
• 400: Client request is bad.
• 500: Server error.

NOTE When beginning a VoD-style review (no outputUrl specified), the REVIEWING
state is only ended when explicitly deleted via the API. When reviewing via streaming
address (multicast or unicast outputUrl), the REVIEWING state ends automatically when
the stream completes playback.

Chapter 2: API Reference
Recording Resources: Recording API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 56

/apis/recordings/recording-{id}/reviews/review-{id}

HTTP Method: GET

• Description: Gets details for the specified review.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <review> element.

• HTTP Return Codes:
• 200: Review is found.
• 404: Review not found.

HTTP Method: DELETE

• Description: Stops and removes the specified review.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <link> element, linking to the <recording> associated with this review.

• HTTP Return Codes:
• 200: Review was successfully stopped.
• 400: Client request is bad.
• 500: Server error.

Chapter 2: API Reference
Recorder Resources: Recorder XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 57

Recorder Resources

A recorder is the software/hardware resource that controls and manages the recording,
publishing, and reviewing of video in the NVR system.

A given recorder:

• Supports a maximum of one active recording at a time (a stream currently being
recorded).

• May have one or more finished, unpublished recordings that are available for review,
publishing or deletion.

Recorder XML Entities

<recorder>

<recorder>
<id>{recorderID}</id>
<service>vfnvrd</service>
<isRecording/>
<isSlave/>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/recorders/recorder-{recorderID}"/>
<link rel="publishes" type="application/xml" href=

"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/publishes"/>

<link rel="recordings" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/recordings"/>

<link rel="reviews" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-
{recorderID}/reviews"/>

<link rel="master" type="application/xml" href=
"https://example.haivision.com/apis/recorders/recorder-{recorderID}" />

</recorder>

• <isRecording> will either:

• Be an empty tag (<isRecording/>) if there is no currently active recording on
this recorder, or

• Contain a value (<isRecording>1</isRecording>) if the recorder has an active
recording and will not allow a new recording to start.

Chapter 2: API Reference
Recorder Resources: Recorder API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 58

• <isSlave> will either:

• Be an empty tag (<isSlave/>) if the recorder is not in use by another recorder.
• Contain a value (<isSlave>1</isSlave>) if the recorder is currently in use by

another recorder.
• If the recorder is a slave, it will have a <link rel="master">. All commands

must be directed at the master.

Recorder API Endpoints

/apis/recorders

HTTP Method: GET

• Description: Gets a list of all registered recorders on the system.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <recorders> element containing multiple <recorder> elements

• HTTP Return Codes:
• 200: Results found.

/apis/recorders/recorder-{id}

HTTP Method: GET

• Description: Gets the recorder entity specified by {id}.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <recorder> element

• HTTP Return Codes:

• 200: Desired id found.
• 404: Desired id not found.

Chapter 2: API Reference
Recorder Resources: Recorder API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 59

/apis/recorders/recorder-{id}/reviews

HTTP Method: GET

• Description: Gets all reviews associated with this recorder’s recordings.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <reviews> element containing multiple <review> elements

• HTTP Return Codes:
• 200: Reviews found.
• 404: No reviews found.

/apis/recorders/recorder-{id}/reviews/review-{id}

HTTP Method: GET

• Description: Gets the specified <review> element.

• Media Types:

• application/xml

• Input Data:

• none

• Return Data:

• <review> element

• HTTP Return Codes:
• 200: Review event found.
• 404: No review events found.

Chapter 2: API Reference
Recorder Resources: Recorder API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 60

/apis/recorders/recorder-{id}/publishes

HTTP Method: GET

• Description: Gets all publishes associated with this recorder’s recordings.

• Media Types:

• application/xml

• Input Data:

• none

• Return Data:

• <publishes> element containing multiple <publish> elements

• HTTP Return Codes:
• 200: Publishes are found.
• 404: No publishes found.

/apis/recorders/recorder-{id}/publishes/publish-{id}

HTTP Method: GET

• Description: Gets the specified <publish> element with transfer status.

• Media Types:
• application/xml

• Input Data:

• none

• Return Data:

• <publish> element

• HTTP Return Codes:
• 200: Publish event is found.
• 404: No publish events found.

Chapter 2: API Reference
Recorder Resources: Recorder API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 61

Mirrrored Endpoints

The following endpoints are all mirrors of the Recording Endpoints, with results isolated to
the selected recorder.

HTTP Method: /apis/recorders/recorder-{id}/recordings

HTTP Method: /apis/recorders/recorder-{id}/recordings/recording-{id}

HTTP Method: /apis/recorders/recorder-{id}/recordings/recording-
{id}/hotmarks

HTTP Method: /apis/recorders/recorder-{id}/recordings/recording-
{id}/hotmarks/hotmark-{id}

HTTP Method: /apis/recorders/recorder-{id}/recordings/recording-
{id}/publishes

HTTP Method: /apis/recorders/recorder-{id}/recordings/recording-
{id}/publishes/publish-{id}

HTTP Method: /apis/recorders/recorder-{id}/recordings/recording-
{id}/reviews

HTTP Method: /apis/recorders/recorder-{id}/recordings/recording-
{id}/reviews/review-{id}

Chapter 2: API Reference
Station Resources: Station XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 62

Station Resources

The stations API allows you to get detailed information about stations available in the
system.

Station XML Entities

The following example responses show two different possible constructions of <station>
elements: the first for multi-stream and the second for single-stream.

For example, when a multi-stream <station> is returned within <stations>, it has
<tracks> and no <outputUrl>.

Chapter 2: API Reference
Station Resources: Station XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 63

<station> (multi-stream)

<station>
<id>0001737f-0000-0000-0000-000000000000</id>
<callsign>MultiTrack</callsign>
<channel>103</channel>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/stations/station-0001737f-0000-0000-
0000-000000000000"></link>

<link rel="schedule" type="text/html" href=
"https://example.haivision.com/apis/stations/station-0001737f-0000-0000-
0000-000000000000/schedule"></link>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/0001737f-0000-0000-0000-
000000000000"></link>

<tracks numberOfTracks="2" >
<track>

<id>0001737f-0000-0000-0000-000000000001</id>
<title>Daft Punk</title>
<outputUrl>vftp://239.35.55.101:4900</outputUrl>
<link rel="launch_link" type="text/html" href=

"https://example.haivision.com/launch/0001737f-0000-0000-0000-
000000000001"></link>

 </track>
 <track>

<id>0001737f-0000-0000-0000-000000000002</id>
<title>Big Buck</title>
<outputUrl>vftp://239.35.55.102:4900</outputUrl>
<link rel="launch_link" type="text/html" href=

"https://example.haivision.com/launch/0001737f-0000-0000-0000-
000000000002"></link>

 </track>
 </tracks>

</station>

When a <station> element is part of a <stations> entry, the <tracks> element will be
a sparse entry with no <track> elements displayed. If the <tracks> element is not
present, the station is not a multi-track station.

Chapter 2: API Reference
Station Resources: Station API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 64

<station> (single-stream)

<station>
<id>0001737e-0000-0000-0000-000000000000</id>
 <callsign>Playback1</callsign>
 <channel>102</channel>
 <outputUrl>vftp://239.35.55.102:4900</outputUrl>
 <link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/stations/station-0001737e-0000-0000-
0000-000000000000"></link>

 <link rel="schedule" type="text/html" href=
"https://example.haivision.com/apis/stations/station-0001737e-0000-0000-
0000-000000000000/schedule"></link>

 <link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/0001737e-0000-0000-0000-
000000000000"></link>

 </station>

In contrast, single-stream stations have an <outputUrl> in <station> and no <tracks>.

Station API Endpoints

/apis/stations

HTTP Method: GET

• Description: Gets the list of stations with details.

• URL Parameters:
• none.

• Media Types:
• application/xml

• Input Data:
• none

• Return Data:
• <stations> element containing multiple <station> elements.

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/stations

Chapter 2: API Reference
Station Resources: Station API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 65

• Example Response:

/apis/stations/station-{id}

HTTP Method: GET

• Description: Gets the details of a station.

• URL Parameters:
• none.

• Media Types:
• application/xml

<?xml version="1.0" encoding="UTF-8"?>
<response>

<stations>
<station>

<id>0001737e-0000-0000-0000-000000000000</id>
<callsign>Playback1</callsign>
<channel>102</channel>
<outputUrl>vftp://239.35.55.102:4900</outputUrl>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/stations/station-0001737e-
0000-0000-0000-000000000000"></link>

<link rel="schedule" type="text/html" href=
"https://example.haivision.com/apis/stations/station-0001737f-
0000-0000-0000-000000000000/schedule"></link>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/0001737e-0000-0000-0000-
000000000000"></link>

</station>
<station>

<id>0001737f-0000-0000-0000-000000000000</id>
<callsign>Dual Live</callsign>
<channel>103</channel>
<tracks numberOfTracks="2"></tracks>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/stations/station-0001737f-
0000-0000-0000-000000000000"></link>

<link rel="schedule" type="text/html" href=
"https://example.haivision.com/apis/stations/station-0001737f-
0000-0000-0000-000000000000/schedule"></link>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/0001737f-0000-0000-0000-
000000000000"></link>

</station>
</stations>

</response>

Chapter 2: API Reference
Station Resources: Station API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 66

• Input Data:
• none

• Return Data:
• <stations> element.

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/stations/station-00015f91-0000-
0000-0000-000000000000

Chapter 2: API Reference
Station Resources: Station API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 67

• Example Response:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<station>
<id>0001737f-0000-0000-0000-000000000000</id>
<callsign> Dual Live </callsign>
<channel>103</channel>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/stations/station-0001737f-0000-
0000-0000-000000000000"></link>

<link rel="schedule" type="text/html" href=
"https://example.haivision.com/apis/stations/station-0001737f-0000-
0000-0000-000000000000/schedule"></link>

<link rel="launch_link" type="text/html" href=
"https://example.haivision.com/launch/0001737f-0000-0000-0000-
000000000000"></link>

<tracks numberOfTracks="2" >
<track>

<id>0001737f-0000-0000-0000-000000000001</id>
<title>Front Camera</title>
<outputUrl>vftp://239.35.55.101:4900</outputUrl>
<link rel="launch_link" type="text/html" href=

"https://example.haivision.com/launch/0001737f-0000-0000-
0000-000000000001"></link>

</track>
<track>

<id>0001737f-0000-0000-0000-000000000002</id>
<title>Side Camera</title>
<outputUrl>vftp://239.35.55.102:4900</outputUrl>
<link rel="launch_link" type="text/html" href=

"https://example.haivision.com/launch/0001737f-0000-0000-
0000-000000000002"></link>

</track>
</tracks>

</station>
</response>

Chapter 2: API Reference
Station Resources: Station API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 68

/apis/stations/station-{id}/schedule

HTTP Method: GET

• Description: Gets the schedule for a station.

• URL Parameters:
• page (optional)

• The page number to access. Default page is 1.
• size (optional)

• The maximum number of results to return. Default size is 100. Size can range
from 1 to 100.

• Timeframe Pattern (optional)
• t0: The exact time of playback for an asset or the start timeframe.
• t1: The ending time of a timeframe. If t1 is specified, t0 must be specified.

NOTE Time is specified as timestamps in the Linux epoch format, e.g., 1327937409

To search for active programs or beginning at a specific time, specify that time with t0.

To search for programs that may be active or beginning in a range of time, specify the
beginning/end of that time range with t0 and t1 respectively.

• Search Pattern (optional)
• q Simple search string. Search is performed on the asset title, description and

tags.
• c Complex search string. Value can be either “and” or “or”, indicating how to

combine search entries. The value is case insensitive.
If c is used, q is ignored. Any additional query parameters are treated as search
entries. The name of a query parameter indicates the field to match. Any field
from the metadata is acceptable. The following fields are also accepted:
• title
• description
• tag
• runtime
• created

• Media Types:
• application/xml

• Input Data:
• none

Chapter 2: API Reference
Station Resources: Station API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 69

• Return Data:
• a <schedule> entity, containing one or more <scheduleItem> entities.

• HTTP Return Codes:
• 200: Results found.
• 400: Client request is bad.
• 404: Unknown ID
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/stations/station-0001737d-0000-
0000-0000-000000000000/schedule

Chapter 2: API Reference
Station Resources: Station API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 70

• Example Response:

<?xml version="1.0" encoding="UTF-8" ?>
<response>

<schedule num_results="3" pageSize="100" page="1">
<stationNum>95101</stationNum>
<link rel="station" type="application/xml" href=

"https://example.haivision.com/station-0001737d-0000-0000-0000-
000000000000" />

<scheduleItem>
<id>1327492800</id>
<airDateTime>1327492800</airDateTime>
<airDuration>9</airDuration>
<link rel="program" type="application/xml" href=

"https://example.haivision.com/apis/programs/program-b3692d4a-
4150-4326-acfa-c420c145aa71" />

</scheduleItem>
<scheduleItem>

<id>1327492809</id>
<airDateTime>1327492809</airDateTime>
<airDuration>9</airDuration>
<link rel="program" type="application/xml" href=

"https://example.haivision.com/apis/programs/program-f74eb830-
29d6-4107-9939-583b33f20d03" />

</scheduleItem>
<scheduleItem>

<id>1327492818</id>
<airDateTime>1327492818</airDateTime>
<airDuration>9</airDuration>
<link rel="program" type="application/xml" href=

"https://example.haivision.com/apis/programs/program-fe484347-
a788-410f-93a2-a06380338a2f" />

</scheduleItem>
</schedule>

</response>

Chapter 2: API Reference
Volume Resources: Volumes XML Entities

Furnace API Integrator’s Guide, v6.6, Issue 01 71

Volume Resources

The volumes API allows you to get detailed information about the volumes in the system.

Volumes XML Entities

<volumes>

<volumes>
<volume>

<id>3a74932e-555d-11e0-8e15-00505637c7b1</id>
<name>Default Volume</name>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/volumes/volume-3a74932e-555d-
11e0-8e15-00505637c7b1"></link>

</volume>
</volumes>

Volumes API Endpoints

/apis/volumes

HTTP Method: GET

• Description: Gets the list of volumes.

• URL Parameters:

• none

• Media Types:

• application/xml

• Input Data:
• none

• Return Data:
• <volumes> element containing multiple <volume> elements.

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/volumes

Chapter 2: API Reference
Volume Resources: Volumes API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 72

• Example Response:

/apis/volumes/volume-{id}

HTTP Method: GET

• Description: Gets the details for a volume.

• URL Parameters:

• none

• Media Types:

• application/xml

• Input Data:
• none

• Return Data:
• <volume> element.

• HTTP Return Codes:
• 200: Results found.
• 404: No results found.

• Example Request:

https://example.haivision.com/apis/volumes/volume-3a74932e-555d-
11e0-8e15-00505637c7b1

<?xml version="1.0" encoding="UTF-8"?>
<response>

<volumes>
<volume>

<id>3a74932e-555d-11e0-8e15-00505637c7b1</id>
<name>Default Volume</name>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/volumes/volume-3a74932e-
555d-11e0-8e15-00505637c7b1"></link>

</volume>
</volumes>

</response>

Chapter 2: API Reference
Volume Resources: Volumes API Endpoints

Furnace API Integrator’s Guide, v6.6, Issue 01 73

• Example Response:

<?xml version="1.0" encoding="UTF-8"?>
<response>

<volume>
<id>3a74932e-555d-11e0-8e15-00505637c7b1</id>
<name>Default Volume</name>
<free_mb>164166</free_mb>
<total_mb>175718</total_mb>
<link rel="self" type="application/xml" href=

"https://example.haivision.com/apis/volumes/volume-3a74932e-555d-
11e0-8e15-00505637c7b1"></link>

</volume>
</response>

Furnace API Integrator’s Guide, v6.6, Issue 01 74

CHAPTER 3: Error Codes

An error condition will return a specified HTTP status code on the requested action.

If the error is processed internally by the API, the returned data may also contain an <error> entity
(see “XML Entities” on page 18).

XML <error>
Code

HTTP Status Code Error Message Common Cause

1000 500 Bad Request Failed to create new
resource

Submitted data was not sufficient,
missing required data.

1001 404 Not Found No results found Request completed successfully,
but no results were found.

1002 404 Not Found Unknown id A specific resource was requested
but not found (deleted or bad ID
specified).

1003 500 Internal
Server Error

Error executing SQL
query

An internal function failed while
executing the request.

1004 500 Bad Request Failed to update
resource

Tried to update a nonexistent entity
(bad ID)

1005 500 Bad Request Failed to delete
resource

Tried to delete a nonexistent entity
(bad ID)

1006 501 Not
Implemented

Unknown API
function requested

Tried to access a nonexistent /
inactive API location

1007 400 Bad Request Unknown HTTP
method

Tried to use a non-standard HTTP
method (other than GET, POST,
PUT, or DELETE)

1008 400 Bad Request Unrecognized URI
structure

Too many levels in specified path
(e.g., /demos////demo-1)

1009 501 Not
Implemented

HTTP method not
implemented

Requested an action not utilized by
the target API (e.g., POST on a
query-only API)

1010 501 Not
Implemented

Function not
implemented

1011 400 Bad Request Input XML data is
poorly formatted

XML content submitted had syntax
or validation problems.

Chapter 3: Error Codes

Furnace API Integrator’s Guide, v6.6, Issue 01 75

1012 500 Internal
Server Error

Error while executing

1013 400 Bad Request Unrecognized
arguments

1014 401 Not
Authorized

Not Authorized Authentication credentials are
invalid, expired, or removed.
-or-
Accessing API site via HTTP
protocol instead of HTTPS

1015 403 Forbidden API functions not
enabled

API access is disabled in server
configuration

1016 503 Service
Unavailable

Service provider for
this API is
unavailable

A server process that supports this
API call was unable to be reached.
It may be down, inaccessible, or
overloaded.

XML <error>
Code

HTTP Status Code Error Message Common Cause

Furnace API Integrator’s Guide, v6.6, Issue 01 76

CHAPTER 4: Example Implementation

PHP

This example implementation uses the PHP curl library to interface with the demos API
documented above. In the example, the XML POST and PUT data is built as a simple
string. In your production implementation, you may want to investigate DOMDocument or
any of the other XML classes that are available in PHP.

NOTE This sample is provided for informational purposes only. It is not intended to be
used in a production environment. In particular, we recommend that you avoid
copying/pasting on platforms other than Windows to avoid formatting issues.

Also, this sample only applies when the API version is set to 1.0 (from the VF Admin
module, Configuration page). Version 2.0 of the API requires OAuth, and it will not
function properly.

<?php

$host = "server.mydomain.com";

//
// Build an HTTP request using cURL
//
function DoHTTPRequest($url, $method, $xmlData)
{
 // initialize curl
 $ch = curl_init();

 // configure curl options
 ///////////////////////////////
 // set the URL
 curl_setopt($ch, CURLOPT_URL, $url);
 // set the HTTP method (GET, POST, PUT, DELETE)
 curl_setopt($ch, CURLOPT_CUSTOMREQUEST, $method);
 // specify the content is XML
 curl_setopt($ch, CURLOPT_HTTPHEADER, array('Content-Type: application/xml'));
 // specify the XML data to submit
 curl_setopt($ch, CURLOPT_POSTFIELDS, $xmlData);
 // return a string from curl_exec(), on false the result is echoed out
 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

Chapter 4: Example Implementation
PHP

Furnace API Integrator’s Guide, v6.6, Issue 01 77

 // execute our HTTP request
 $result = curl_exec($ch);

 // close curl resource
 curl_close($ch);

 // return the result
 return $result;
}

// Example handler that gets a function and id from the user as URL parameters
// Based on the parameters perform one of the CRUD tasks with our Demo API

// determine what action the user is trying to do
switch($_REQUEST['function'])
{
 case 'create_resource':
 {
 // specify we want to use an HTTP POST
 $method = "POST";
 // the demo database has two columns name and value
 // build an xml string to send with default values for our new record
 $data = "<data><name>MyName</name><value>MyValue</value></data>";
 // send the request
 $result = DoHTTPRequest("https://$host/apis/demos", $method, $data);
 // echo the result
 echo $result;
 break;
 }
 case 'get_resource':
 {
 // specify we want to use an HTTP GET
 $method = "GET";
 // this is a GET so there is no data to submit, some API calls may support a search
condition here
 $data = "";
 // check if the user wants a particular ID
 if(isset($_REQUEST['id']))
 {
 // get a particular record
 // send the request
 $result = DoHTTPRequest("https://$host/apis/demos/demo-{$_REQUEST['id']}",
$method, $data);
 }
 else
 {
 // get all records
 // send the request
 $result = DoHTTPRequest("https://$host/apis/demos", $method, $data);
 }

Chapter 4: Example Implementation
PHP

Furnace API Integrator’s Guide, v6.6, Issue 01 78

 // echo the result
 echo $result;
 break;
 }
 case 'update_resource':
 {
 // specify we want to use an HTTP PUT
 $method = "PUT";
 // the demo database has two columns name and value
 // build an xml string to send with the new values for our record
 $data =
"<data><name>MyUpdatedName</name><value>MyUpdatedValue</value></data>";
 // send the request, we expect the user to have submited an id number to edit
 $result = DoHTTPRequest("https://$host/apis/demos/demo-{$_REQUEST['id']}",
$method, $data);
 // echo the result
 echo $result;
 break;
 }
 case 'delete_resource':
 {
 // specify we want to use an HTTP DELETE
 $method = "DELETE";
 // this is a DELETE so there is no data to submit, some API calls may support a
condition here
 $data = "";
 // send the request, we expect the user to have submited an id number to delete
 $result = DoHTTPRequest("https://$host/apis/demos/demo-{$_REQUEST['id']}",
$method, $data);
 // echo the result
 echo $result;
 break;
 }
 default:
 {
 // print an error for unrecognized function requests
 echo "ERROR: unrecognized function - {$_REQUEST['function']}";
 }
}

?>

Furnace API Integrator’s Guide, v6.6, Issue 01 79

CHAPTER 5: Simple Testing From the
Command Line

Some very basic interaction can be done with the command-line tool “cURL” (http://curl.haxx.se/)
which is normally installed on most Unix/Linux or OSX systems.

A few examples are provided below to help you familiarize yourself with the system without the need
for writing or debugging code:

Simple GET to an API location:

curl "https://SERVER/apis/demos"

POST a new entity:

curl -X POST -H "Content-Type: application/xml" -d
"<demo><name>MyDemo</name></demo>" "https://SERVER/apis/demos"

DELETE an entity:

curl -X DELETE "https://SERVER/apis/demos/demo-1"

http://curl.haxx.se/

Furnace API Integrator’s Guide, v6.6, Issue 01 80

APPENDIX A: Warranty Information

Software End User License Agreement

READ BEFORE USING

THIS SOFTWARE END USER LICENSE AGREEMENT (“AGREEMENT”) IS FOR ANY OR ALL OF THE
HAIVISION SOFTWARE PRODUCT(S) LICENSED, DOWNLOADED, INSTALLED AND/OR ACTIVATED
BY YOU (“PRODUCT”). THE PRODUCT IS PROTECTED BY NATIONAL AND INTERNATIONAL
COPYRIGHT LAWS AND TREATIES.

READ THE TERMS OF THE FOLLOWING AGREEMENT CAREFULLY. BY CLICKING THE ACCEPT
BUTTON ON THIS AGREEMENT, OPENING THE SHRINKWRAP AROUND OR USING THE PRODUCT OR
ANY PORTION THEREOF, OR BY USING OR DISTRIBUTING ANY VIDEO INFORMATION ENCODED BY,
DECODED BY OR OTHERWISE MANIPULATED OR PASSED THROUGH THE PRODUCT, YOU CONFIRM
YOUR ACCEPTANCE OF THIS AGREEMENT.

THIS AGREEMENT IS A LEGAL AGREEMENT BETWEEN YOU (A SINGLE CORPORATE ENTITY) AND
HAIVISION. IF YOU DO NOT AGREE TO THESE TERMS, HAIVISION IS UNWILLING TO LICENSE THE
PRODUCT TO YOU AND YOU ARE NOT AUTHORIZED TO INSTALL OR USE THE PRODUCT.

NOTWITHSTANDING SECTION 6.5 BELOW, THIS AGREEMENT ONLY GOVERNS THE PRODUCT(S) IF
A SEPARATE SOFTWARE END USER LICENSE AGREEMENT HAS NOT BEEN SIGNED PRIOR TO THIS
AGREEMENT FOR THE PRODUCT OR THE AGREEMENT IS NOT SUPERCEDED BY A SEPARATE
SOFTWARE END USER LICENSE AGREEMENT FOR THE PRODUCT AT A LATER DATE.

1. DEFINITIONS

1.1. Entitlement. The collective set of applicable documents (e.g., warranty, support and maintenance
documents, data sheets, etc.) authorized by Haivision Network Video or its affiliate Haivision
(collectively, “Haivision”) evidencing your obligation to pay associated fees (if any) for the license,
associated Services, and the authorized scope of use of Product under this Agreement.

1.2. License Fee. License Fee shall mean the consideration paid to Haivision for use of the Product. The
License Fee is part or all of the price paid for the relevant Product.

1.3. Product. Product shall mean the executable version of Haivision’s computer software, program or code,
in object code format (specifically excluding source code), together with any related material including,
but not limited to the hardware, Reference Manuals or database schemas provided for use in connection
with the Product and including, without limitation, all Upgrades through the date of installation.

1.4. Reference Manuals. Reference Manuals shall mean the most current version of the documentation for
use in connection with the Product provided by Haivision to You.

1.5. Third-Party Content. Services or materials, which are not proprietary to Haivision or may not be part of
the materials of the company, entity or individual using the Product.

Warranty Information
Software End User License Agreement

Furnace API Integrator’s Guide, v6.6, Issue 01 81

1.6. Updates. Updates shall mean any periodic software releases, additions, fixes, and enhancements
thereto, release notes for the Product and related Reference Manuals, (other than those defined elsewhere
in this section as Upgrades) which have no value apart from their operation as part of the Product and
which add minor new functions to the Product, but none so significant as to warrant classification as an
Upgrade, which may be provided by Haivision to fix critical or non-critical problems in the Product on a
scheduled, general release basis. Updates to the Product (“Version”) are denoted by number changes to
the right of the decimal point for a version and revision number (for example, going from 2.0.0 to 2.1.0).

1.7. Upgrades. Upgrades shall mean any modification to the Product made by Haivision, which are so
significant, in Haivision’s sole discretion, as to warrant their exclusion under the current license grant for
the Product. Upgrades of Product are denoted by number changes to the left of the decimal point for a
release number (for example, going from 2.0 to 3.0).

1.8. You (or Your). The legal entity specified in the Entitlement, or for evaluation purposes, the entity
performing the evaluation.

2. RIGHTS AND RESTRICTIONS

2.1. License to Use. Subject to the terms and conditions set forth herein and subject to the terms of your
Entitlement, Haivision hereby grants to You a non-exclusive, personal, limited and nontransferable right
and license to use the Product in accordance with the terms of this Agreement. This license is granted to
You and not, by implication or otherwise, to any parent, subsidiary or affiliate of Yours without
Haivision’s specific prior written consent. This license is for the limited use of the Product by You for the
purpose of creating, managing, distributing and viewing IP Video assets. This license does not grant any
license for content whatsoever. All rights not expressly granted to You by this Agreement are reserved by
Haivision.

2.2. Restrictions.

 (a) Reproduction. You shall not copy, modify, distribute, use or allow access to any of the Product,
except as explicitly permitted under this Agreement and only in the quantities designated in the
Entitlement. However, You have the right to make copies of the Product solely for archival
purposes, but only in quantities necessary and typical for your Organization. You shall not modify,
adapt, translate, export, prepare derivative works from, decompile, reverse engineer, disassemble or
otherwise attempt to derive source code, hardware designs or other proprietary information from the
Product or any internal data files generated by the Product, or use the Product embedded in any third
party hardware or software. You shall also not use the Product in an attempt to, or in conjunction
with, any device, program or service designed to circumvent technological measures employed to
control access to, or the rights in other work protected by copyright laws. You shall not remove,
modify, replace or obscure Haivision’s copyright and patent notices, trademarks or other proprietary
rights notices affixed to or contained within any Product. No right is granted hereunder for any third
party who obtains access to any Product through You to use the Product to perform services for third
parties. Most sublicensing arrangements are prohibited under this Agreement. However, if You are a
Reseller, You are permitted to sublicense the Product to single end-users under terms and conditions
similar to the provisions of this Agreement; however, You are responsible and liable pursuant to the
terms and conditions of this Agreement for Your sublicensees’ actions and failures to take required
actions with respect to the Product.

 (b) Ownership. The Product is conditionally licensed and not sold. As between the parties, Haivision
and/or its licensors owns and shall retain all right, title and interest in and to all of the Product,
including all copyrights, patents, trade secret rights, trademarks and other intellectual property rights
therein, and nothing in this Agreement shall be deemed to transfer to You any ownership or title to
the Product. You agree that you will not remove, alter or otherwise obscure any proprietary rights

Warranty Information
Software End User License Agreement

Furnace API Integrator’s Guide, v6.6, Issue 01 82

notices appearing in the Product. All Haivision technical data and computer software is commercial
in nature and developed solely at private expense.

3. TERM AND TERMINATION

3.1. Term. The license and service term are set forth in your Entitlement(s). Additionally, this Agreement
may be terminated without cause by You upon thirty (30) days written notice to Haivision.

3.2. Termination for Breach. Your rights under this Agreement will terminate immediately without notice
from Haivision if You materially breach this Agreement or take any action in derogation of Haivision’s
rights to the Product. Haivision may terminate this Agreement should any Software become, or in
Haivision’s reasonable opinion likely to become, the subject of a claim of intellectual property
infringement or trade secret misappropriation.

3.3. Termination for Bankruptcy. Haivision may terminate this Agreement, effective immediately, if You
file, or have filed against You, a petition for voluntary or involuntary bankruptcy or pursuant to any other
insolvency law, makes or seeks to make a general assignment for the benefit of its creditors or applies for,
or consents to, the appointment of a trustee, receiver or custodian for a substantial part of its property.

3.4. Termination; Effect; Survival. Upon the termination of this Agreement for any reason:

 (a) All license rights granted hereunder shall terminate;

 (b) You shall immediately pay to Haivision all amounts due and outstanding as of the date of such
termination or expiration; and

 (c) You shall return to Haivision all Product and all Haivision Reference Manuals or certify that all such
Product and Reference Manuals have been destroyed. Notwithstanding any termination of this
Agreement, the following provisions of this Agreement shall survive for the relevant period of time
set forth therein, if any: Sections 2.2, 4, 5 and 6.

4. REPRESENTATIONS, DISCLAIMER AND LIMITATION OF LIABILITY

4.1. Limited Warranty. Haivision warrants that: (i) the Product will operate substantially in accordance with
the Reference Manuals provided and (ii) any media on which the Product is provided will be free of
material damage and defects in materials and workmanship under normal use for a term of ninety (90)
days (the “Warranty Period”) after its delivery date. As Your sole and exclusive remedy for any breach of
this warranty, Haivision will use its commercially reasonable efforts to correct any failure of the Product
to operate substantially in accordance with the Reference Manuals which is not the result of any improper
or unauthorized operation of the Product and that is timely reported by You to Haivision in writing within
the Warranty Period, provided that in lieu of initiating commercially reasonable efforts to correct any such
breach, Haivision may, in its absolute discretion, either: (i) replace the Product with other software or
technology which substantially conforms to the Reference Manuals or (ii) refund to You a portion of the
fee paid for the relevant Product, whereupon this Agreement shall terminate. This warranty shall
immediately terminate if You or any third party makes or attempts to make any modification of any kind
whatsoever to the Product, engages in any improper or unauthorized operation of the Product, including
uses prohibited by the Entitlement or installs or uses the Product on or in connection with any hardware or
software not specified in the Entitlement or product data sheets.

4.2. Warranty Disclaimers. THE EXPRESS WARRANTIES SET FORTH IN SECTION 4.1 ABOVE IN
RESPECT TO THE PRODUCT ARE IN LIEU OF ALL OTHER WARRANTIES, WHETHER
EXPRESS OR IMPLIED, OR STATUTORY, REGARDING THE PRODUCT, OR ITS OPERATION,
FUNCTIONALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS (ALL

Warranty Information
Software End User License Agreement

Furnace API Integrator’s Guide, v6.6, Issue 01 83

OF WHICH ARE DISCLAIMED). HAIVISION DOES NOT WARRANT THAT ANY OF THE
PRODUCT(S) WILL MEET ALL OF YOUR NEEDS OR REQUIREMENTS, OR THAT THE USE OF
ANY OF THE PRODUCT(S) WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT ALL
ERRORS WILL BE DETECTED OR CORRECTED.

4.3. Liability Limitation. IN NO EVENT SHALL HAIVISION OR ITS OFFICERS, EMPLOYEES,
AGENTS, REPRESENTATIVES, OR MEMBERS, NOR ANYONE ELSE WHO HAS BEEN
INVOLVED IN THE CREATION, PRODUCTION OR DELIVERY OF THE PRODUCT, BE LIABLE
TO YOU, YOUR CUSTOMERS OR TO ANY OTHER THIRD PARTY FOR CONSEQUENTIAL,
INDIRECT, INCIDENTAL, PUNITIVE OR SPECIAL DAMAGES, LOST PROFITS, LOSS OF USE,
INTERRUPTION OF BUSINESS OR FOR ANY DAMAGES FOR ANY BREACH OF THE TERMS
OF THIS AGREEMENT OR FOR LOST OR CORRUPTED DATA ARISING FROM ANY CLAIM OR
ACTION HEREUNDER, BASED ON CONTRACT, TORT OR OTHER LEGAL THEORY
(INCLUDING NEGLIGENCE)AND WHETHER OR NOT SUCH PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. HAIVISION SHALL NOT BE LIABLE FOR DAMAGES
FOR ANY CAUSE WHATSOEVER IN AN AMOUNT IN EXCESS OF THE FEE PAID TO
HAIVISION BY YOU FOR THE RELEVANT PRODUCT.

5. INDEMNIFICATION

5.1. Indemnification by Haivision.

 (a) Haivision shall indemnify and hold You harmless against any and all actions, claims, losses,
damages, liabilities, awards, costs and expenses (including reasonable attorneys’ fees) (“Claims”)
arising out of (i) any accusation or purported violation of any third person’s US and Canadian
copyright, trademark, patent rights or trade secrets, proprietary information on account of Your use
of the Product when used in accordance with the terms of this Agreement, or (ii) relating to or arising
out of any negligence or willful misconduct on the part of Haivision or any breach by Haivision of
the terms of this Agreement or any Maintenance and Support Agreement, or applicable law. You
shall promptly notify Haivision in writing of any such Claim and promptly tender the control of the
defense and settlement of any such Claim to Haivision. Haivision shall thereafter undertake the
defense of any such Claim using counsel of its choice. You shall cooperate with Haivision, in
defending or settling such Claim at the expense of Haivision; provided that Haivision shall not settle
any Claim against You which would require the payment of money by You without the prior written
consent of You, which consent shall not be unreasonably withheld. You shall have the right to
consult and provide input into the defense with counsel of its choice at its own expense. Haivision
shall not reimburse You for any expenses incurred by You without the prior written approval of
Haivision, which approval shall not be unreasonably withheld.

 (b) If any Product is, or in the opinion of Haivision may become, the subject of any Claim for
infringement, then Haivision may, or if it is adjudicatively determined that any of the Product
infringes in the manner described above (except to the extent that any translation, modification,
addition or deletion or combination by You is the sole source of such Claim), then Haivision shall, at
its option, either (i) procure for You the right to continue use of the Product for the term hereof, (ii)
replace or modify the Product with other suitable and reasonably equivalent products so that the
Product becomes non-infringing, or (iii) terminate this Agreement and refund to You a portion of the
fee paid for the relevant Product.

 (c) Haivision shall have no liability for: (i) the use of other than the then current release of the Product;
(ii) the use of the Product other than as set forth in its accompanying documentation and as permitted
herein; (iii) the modification of any of the Product by any party other than Haivision; or (iv) any
infringement arising from the use of any Product by You after Haivision has issued a written notice
to You requiring You to cease using such Product when Haivision exercises its option to terminate
the License pursuant to Section 3.2 (collectively, “Exclusions”). SECTION 5.1 STATES

Warranty Information
Software End User License Agreement

Furnace API Integrator’s Guide, v6.6, Issue 01 84

HAIVISION’S ENTIRE OBLIGATION WITH RESPECT TO ANY CLAIM REGARDING THE
INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY.

5.2. Indemnification by You. You shall indemnify and hold Haivision harmless against any and all Claims
directly or indirectly arising out of, or in any manner whatsoever associated or connected with Your
performance, purported performance or non-performance of your rights and obligations under this
Agreement, and against any and all Claims incurred by or on behalf of any of the foregoing in the
investigation or defense of any and all such Claims.

6. OTHER PROVISIONS

6.1. Export and Other Restrictions. This Agreement, and all Your rights and Your obligations under this
Agreement, are subject to all applicable Canadian and U.S. Government laws and regulations relating to
exports including, but not limited to, the U.S. Department of Commerce Export Administration Act and
its associated Regulations and all administrative acts of the U.S. Government thereunder. In the event the
Product or the Hardware is exported from the United States or re-exported from a foreign destination, You
shall ensure that the distribution and export/re-export of the Product or the Hardware is in compliance
with all laws, regulations, orders, or other restrictions of the U.S. Export Administration Act and its
associated Regulations. You agree that neither you nor any of your Affiliates will export/re-export any
Product, any hardware on which the Product is loaded or embedded, technical data, process, or service,
directly or indirectly, to any country for which the Canadian government or United States government (or
any agency thereof) requires an export license, other governmental approval, or letter of assurance,
without first obtaining such license, approval or letter.

6.2. Content. Your data and/or your use of the Product may not: (i) interfere in any manner with the
functionality or proper working of the Product; (ii) stream any material that is copyrighted, protected by
trade secret or otherwise subject to third party proprietary rights, including privacy and publicity rights,
unless You are the owner of such rights or have permissions from the rightful owner to post the material;
(iii) constitute, promote, facilitate or permit any illegal activities, including without limitation, activities
that might be libelous or defamatory, invasive of privacy or publicity rights, abusive or otherwise
malicious or harmful to any person or entity; (iv) distribute, share or facilitate unauthorized data, malware,
viruses, Trojan horses, spyware, worms or other malicious or harmful distributions; or (v) otherwise
violate, misappropriate or infringe the intellectual property, privacy, publicity, contractual or other
proprietary rights of any third party.

6.3. Consent to Use Data. You agree that Haivision may collect and use technical data and related
information, including but not limited to technical information about Your device, system and application
software and peripherals, that is gathered periodically to facilitate the provision of software updates,
product support and other services to You (if any) related to the Product. Haivision may use this
information, as long as it is in a form that does not personally identify You, to improve its products or to
provide services or technologies to You.

6.4. Transfer and Assignment. Haivision may assign, sublicense, or transfer this Agreement and/or any or
all of its rights or obligations hereunder. You may not assign, transfer or delegate any of its rights or
obligations hereunder (whether by operation of law or otherwise) without the prior written consent of
Haivision. For purposes of the preceding sentence, and without limiting its generality, any merger,
consolidation or reorganization involving You (regardless of whether You are a surviving or disappearing
entity) will be deemed to be a transfer of rights, obligations or performance under this Agreement for
which Haivision's prior written consent is not required. Any unauthorized assignment, transfer or
delegation by You shall be null and void. This Agreement is binding upon and inures to the benefit of the
parties hereto and their respective permitted successors and assigns.

Warranty Information
Software End User License Agreement

Furnace API Integrator’s Guide, v6.6, Issue 01 85

6.5. Waiver and Amendment. No modification, amendment or waiver of any provision of this Agreement
shall be effective, unless in writing signed by both parties. No failure or delay by either party in exercising
any right, power or remedy under this Agreement, except as specifically provided herein, shall operate as
a waiver of any such right, power or remedy. Without limiting the foregoing, any additional legal terms
and conditions submitted by You in any other documents, including but not limited to the Entitlement,
shall be of no legal force or effect.

6.6. Enforcement by Third Party. For any Product licensed by Haivision from other suppliers, the
applicable supplier is a third party beneficiary of this Agreement with the right to enforce directly the
obligations set forth in this Agreement against You.

6.7. Third Party Content. Haivision is not responsible for examining or evaluating the data, accuracy,
completeness, timeliness, validity, copyright compliance, legality, decency, quality or any other aspect of
any Third Party Content. Haivision does not warrant or endorse and does not assume and will not have
any liability or responsibility to You or any other person for any Third Party content. You agree that any
Third Party Content may contain proprietary information and material that is protected by applicable
intellectual property and other laws, including but not limited to copyright, and that you will not use such
proprietary content, information or materials in any way whatsoever except for permitted uses of the
Third Party Content.

6.8. Third Party Royalties. Your further reuse, retransmission, rebroadcast, display or other distribution of
your Third Party Content using the Product may require that you obtain a license from and / or pay
royalties to the owners of certain third party audio and video formats. You are solely responsible for
obtaining such licenses and paying such royalties.

6.9. Governing Law/Submission to Jurisdiction. This Agreement shall be governed by and construed in
accordance with the laws of the Province of Québec, Canada and the Laws of Canada applicable therein
(excluding any conflict of laws rule or principle, foreign or domestic), exclusive of the U.N. Convention
on the International Sale of Goods. You hereby consent to the jurisdiction of any provincial or federal
court located within the Province of Quebec and waive any objection which You may have based on
improper venue or forum non conveniens to the conduct of any proceeding in any such court.

6.10. Severability. If any provision of this Agreement is held by a court of competent jurisdiction to be
contrary to law, such provision shall be changed and interpreted so as to best accomplish the objectives of
the original provision to the fullest extent allowed by law and the remaining provisions of this Agreement
shall remain in full force and effect.

6.11. Force Majeure. Neither party shall be liable to the other party for any failure or delay in performance to
the extent that such delay or failure is caused by fire, flood, explosion, war, terrorism, embargo,
government requirement, labor problems, export controls, failure of utilities, civil or military authority,
act of God, act or omission of carriers or other similar causes beyond its control. If any such event of force
majeure occurs, the party delayed or unable to perform shall give immediate notice to the other party, and
the party affected by the other's delay or inability to perform may elect, at its sole discretion, to terminate
this Agreement or resume performance once the condition ceases, with an option in the affected party to
extend the period of this Agreement up to the length of time the condition endured. Unless written notice
is given within 30 calendar days after the affected party is notified of the condition, the latter option shall
be deemed selected. During an event of force majeure, the affected party shall exercise reasonable effort
to mitigate the effect of the event of force majeure.

6.12. Entire Agreement. This Agreement, together with the Entitlement and all other documents that are
incorporated by reference herein, constitutes the sole and entire agreement between Haivision and You
with respect to the subject matter contained herein, and supersedes all prior and contemporaneous
understandings, agreements, representations and warranties, both written and oral, with respect to such
subject matter.

Warranty Information
Software End User License Agreement

Furnace API Integrator’s Guide, v6.6, Issue 01 86

6.13. Language. The parties confirm that it is their wish that this Agreement, together with the Entitlement
and any other documents relating hereto, have been and shall be drawn up in the English language only.
Les parties conferment que c’est leur volonte expresse que ce contrat et tous documents y etant relative, y
compris les bons de commande, le avis, le anneses, les autorisations, les pieces jointes et les amendments
solent rediges en langue anglais seulement.

6.14. Headings Not Controlling. The headings used in this Agreement are for reference purposes only and
shall not be deemed a part of this Agreement.

6.15. US Government Rights. Some Products are commercial computer software, as such, term is defined in
48 C.F.R. §2.101. Accordingly, if You, as the Licensee, is the US Government or any contractor therefor,
You shall receive only those rights with respect to the Product and Reference Materials as are granted to
all other end users under license, in accordance with:

 (a) 48 C.F.R. §227.7201 through 48 C.F.R. §227.7204, with respect to the Department of Defense and
their contractors; or

 (b) 48 C.F.R. §12.212, with respect to all other US Government licensees and their contractors.

6.16. Notices. All notices, requests, consents, claims, demands, waivers and other communications hereunder
shall be in writing and shall be deemed to have been given:

 (a) When delivered by hand (with written confirmation of receipt);

 (b) When received by the addressee if sent by a nationally recognized overnight courier (receipt
requested);

 (c) On the date sent by facsimile (with confirmation of transmission) if sent during normal business
hours of the recipient, and on the next business day if sent after normal business hours of the
recipient; or

 (d) On the third day after the date mailed, by certified or registered mail, return receipt requested,
postage prepaid. Such communications must be sent to the respective parties at the addresses set
forth on the Entitlement (or to such other address as may be designated by a party from time to time
in accordance with this Section 6.16.

If you have questions, please contact Haivision Systems Inc., at 4445 Garand, Montréal, Québec, H4R 2H9 Canada or
legal@haivision.com.

mailto:legal@haivision.com

	Table of Contents
	About This Guide
	About Haivision
	Audience
	Reliability of Information
	Obtaining Documentation
	Related Documents
	Service Support
	Document Conventions

	Chapter 1: Introduction
	URIs for REST Resources
	URI Structure

	OAuth
	Implementing OAuth

	REST API Responses
	Diagnostics
	XML Entities
	<error>
	<link>

	Chapter 2: API Reference
	Summary of Furnace API Resources
	Demo Resources
	Demo XML Entities
	<demo>

	Demo API Endpoints
	/apis/demos/demo-{id}

	Asset Resources
	Asset XML Entities
	<asset>

	Asset API Endpoints
	/apis/assets/asset-{id}

	Client Resources
	Client XML Entities
	<client>

	Client API Endpoints
	/apis/clients/client-{id}

	Command Resources
	Command XML Entities
	<command>

	Command API Endpoints

	Program Resources
	Program XML Entities
	<program>

	Program API Endpoints

	Recording Resources
	Recording XML Entities
	<recording>
	<review>
	<publish> resource
	<publish> POST resource
	<hotmark>

	Recording API Endpoints
	/apis/recordings/recording-{id}
	/apis/recordings/recording-{id}/hotmarks
	/apis/recordings/recording-{id}/hotmarks/hotmark-{id}
	/apis/recordings/recording-{id}/publishes
	/apis/recordings/recording-{id}/publishes/publish-{id}
	/apis/recordings/recording-{id}/reviews
	/apis/recordings/recording-{id}/reviews/review-{id}

	Recorder Resources
	Recorder XML Entities
	<recorder>

	Recorder API Endpoints
	/apis/recorders/recorder-{id}
	/apis/recorders/recorder-{id}/reviews
	/apis/recorders/recorder-{id}/reviews/review-{id}
	/apis/recorders/recorder-{id}/publishes
	/apis/recorders/recorder-{id}/publishes/publish-{id}
	Mirrrored Endpoints

	Station Resources
	Station XML Entities
	<station> (multi-stream)
	<station> (single-stream)

	Station API Endpoints
	/apis/stations/station-{id}
	/apis/stations/station-{id}/schedule

	Volume Resources
	Volumes XML Entities
	<volumes>

	Volumes API Endpoints
	/apis/volumes/volume-{id}

	Chapter 3: Error Codes
	Chapter 4: Example Implementation
	PHP

	Chapter 5: Simple Testing From the Command Line
	Simple GET to an API location:
	POST a new entity:
	DELETE an entity:

	Appendix A: Warranty Information
	Software End User License Agreement
	READ BEFORE USING

