
Makito CoT Addendum, v2.3, Issue 01 1

Cursor on Target Capture from the
Makito

This Addendum supplements the Makito User’s Guide with the information required to use
the Cursor on Target Metadata Capture option.

For general information on the Makito, please refer to the Makito User’s Guide or the
online help available from the Web Interface.

Topics In This Addendum

Introduction . 2
Cursor on Target . 2

CoT to KLV Metadata Mapping . 3
Aircraft Message . 3
Sensor Point of Interest (SPI) Message . 4

Seriald Version 1 Over-the-Air Protocol . 6
Overview . 6
Channelization . 7
Automatic Repeat Request . 8
Frame Check Sequence . 11
Forward Error Correction . 12
Bit Framing . 13
Serial Port Timing . 14
Conclusion . 15

Cursor on Target Capture from the Makito
Introduction

Makito CoT Addendum, v2.3, Issue 01 2

Introduction

The Makito supports both KLV (Key Length Value) and CoT (Cursor on Target) metadata
capture and stream insertion. This optional feature allows the encoder to capture metadata
and then incorporate the information within the metadata elementary stream of the standard
MPEG Transport Stream. As of Version 2.2.0, the Makito also accepts raw CoT metadata
from a UDP source and filters the SPI (Sensor Point of Interest) messages based on a user-
supplied string.

For information on controlling and managing CoT metadata insertion parameters through
the Makito Web Interface, please refer to the Makito User’s Guide or the online help.

Cursor on Target

The Makito offers advanced capabilities for the translation of CoT (Cursor on Target) infor-
mation (for UAV applications) into industry standard KLV format. The input format of
serial or network metadata sources can be set to CoT from the Web Interface.

Cursor on Target is an XML-based protocol that enables Machine-to-Machine Targeting
to:

• provide special forces the ability to click on a laser rangefinder designating a hostile
target,

• pass precision coordinates,
• send mensurated target coordinates to an airborne strike asset, and
• download these directly into a GPS guided munition.

Cursor on Target Capture from the Makito
CoT to KLV Metadata Mapping

Makito CoT Addendum, v2.3, Issue 01 3

CoT to KLV Metadata Mapping

This section describes the CoT to KLV metadata mapping implemented for the Makito. The
requirement is to transmit one KLV message in the transport stream for each pair of Aircraft
and SPI messages received by the Makito. The format for these messages is provided in the
following two sections:

• Aircraft Message
• Sensor Point of Interest (SPI) Message

If a message is missing a CoT element from these lists of aircraft and sensor data elements,
the KLV message still transmits the information that was received. Reasons for missing
information might include a platform that does not support all of the CoT elements listed
below or an incomplete message received by the Makito.

Aircraft Message

To distinguish between an aircraft message and associated data, the type field has the
following values associated: a-f-A-M-F-Q-r, a-f-A-C-F-r and a-f-A-M-F-M

To simplify this to allow for future platforms or changes, do a match against a-f-A which
maps out to be a friendly aircraft.

CoT Key (Original
Requirement)

KLV Key Based
on MISB
EG0601.1

KLV LDS Name
Based on MISB
EG0601.1

16-byte Metadata Label
or 16-byte Set Designator
Based on MISB EG0104.5

Metadata Element or Set
Name Based on MISB
EG0104.5

uid 10 Platform
Designation

06 0E 2B 34 01 01 01 01
01 01 20 01 00 00 00 00

Device Designation

start 72 Event Start Time
UTC

06 0E 2B 34 01 01 01 01
07 02 01 02 07 01 00 00

Event Start Date Time -
UTC

time 2 Unix Time Stamp 06 0E 2B 34 01 01 01 03
07 02 01 01 01 05 00 00

User Defined Time
Stamp

track course 5 Platform Heading
Angle

06 0E 2B 34 01 01 01 01
07 01 10 01 02 00 00 00

Angle to North

track speed 9 Platform Indicated
Airspeed

Not defined in EG0104.5 Not defined in
EG0104.5

point lat 13 Sensor Latitude 06 0E 2B 34 01 01 01 03
07 01 02 01 02 04 02 00

Device Latitude

point hae 15 Sensor True
altitude

06 0E 2B 34 01 01 01 01
07 01 02 01 02 02 00 00

Device Altitude

point lon 14 Sensor Longitude 06 0E 2B 34 01 01 01 03
07 01 02 01 02 06 02 00

Device Longitude

Cursor on Target Capture from the Makito
CoT to KLV Metadata Mapping

Makito CoT Addendum, v2.3, Issue 01 4

Sensor Point of Interest (SPI) Message

To distinguish an SPI message and associated data, the type field has the following value
associated: b-m-p-s-p-i: x

altitude roll 7 Platform Roll
Angle

06 0E 2B 34 01 01 01 07
07 01 10 01 04 00 00 00

(7 Platform Roll Angle)
= (event/detail/spatial/
altitude/roll)

altitude pitch 6 Platform Pitch
Angle

06 0E 2B 34 01 01 01 07
07 01 10 01 05 00 00 00

(6 Platform Pitch Angle)
= (event/detail/spatial/
altitude/pitch)

CoT Key (Original
Requirement)

KLV Key Based
on MISB
EG0601.1

KLV LDS Name
Based on MISB
EG0601.1

16-byte Metadata Label or
16-byte Set Designator
Based on MISB EG0104.5

Metadata Element or Set
Name Based on MISB
EG0104.5

uid 63 Sensor Field of
View Name

06 0E 2B 34 01 01 01 01
04 20 01 02 01 01 00 00

Image Source Device

point lat 23 Frame Center
Latitude

06 0E 2B 34 01 01 01 01
07 01 02 01 03 02 00 00

Frame Center Latitude

point hae 25 Frame Center
Elevation

06 0E 2B 34 01 01 01 0A
07 01 02 01 03 16 00 00

Frame Center Elevation

point le 46 Target Error
Estimate – LE90

Not defined in EG0104.5 Not defined in
EG0104.5

point lon 24 Frame Center
Longitude

06 0E 2B 34 01 01 01 01
07 01 02 01 03 02 00 00

Frame Center Latitude

point ce 45 Target Error
Estimate – CE90

Not defined in EG0104.5 Not defined in
EG0104.5

sensor
azimuth

18 Sensor Relative
Azimuth Angle

06 0E 2B 34 01 01 01 01
07 01 10 01 02 00 00 00

(18 Sensor Relative
Azimuth Angle) =
(sensor/azimuth) -
(5 Platform Heading
Angle)

sensor fov 16 Sensor Horizontal
Field of View

06 0E 2B 34 01 01 01 02
04 20 02 01 01 08 00 00

FOV - Horizontal

sensor vfov 17 Sensor Vertical
Field of View

06 0E 2B 34 01 01 01 07
04 20 02 01 01 0A 01 00

FOV - Vertical

sensor model 11 Image Source
Sensor

06 0E 2B 34 01 01 01 01
04 20 01 02 01 01 00 00

Image Source Device

CoT Key (Original
Requirement)

KLV Key Based
on MISB
EG0601.1

KLV LDS Name
Based on MISB
EG0601.1

16-byte Metadata Label
or 16-byte Set Designator
Based on MISB EG0104.5

Metadata Element or Set
Name Based on MISB
EG0104.5

Cursor on Target Capture from the Makito
CoT to KLV Metadata Mapping

Makito CoT Addendum, v2.3, Issue 01 5

sensor range 21 Slant Range 06 0E 2B 34 01 01 01 01
07 01 08 01 01 00 00 00

sensor
elevation

19 Sensor Relative
Elevation Angle

06 0E 2B 34 01 01 01 01
07 01 10 01 03 00 00 00

(19 Sensor Relative
Elevation Angle) =
(event/data/sensor/elev
ation) - (6 Platform Pitch
Angle)

sensor roll 20 Sensor Relative
Roll Angle

06 0E 2B 34 01 01 01 01
07 01 10 01 01 00 00 00

(20 Sensor Relative
Roll Angle) =
(event/data/sensor/roll)
- (7 Platform Roll Angle)

CoT Key (Original
Requirement)

KLV Key Based
on MISB
EG0601.1

KLV LDS Name
Based on MISB
EG0601.1

16-byte Metadata Label or
16-byte Set Designator
Based on MISB EG0104.5

Metadata Element or Set
Name Based on MISB
EG0104.5

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 6

Seriald Version 1 Over-the-Air Protocol

This section describes the SerialD protocol used to transport CoT XML data on serial ports.
For network sources, the XML data is directly carried over UDP.

Overview

Seriald makes use of a layered communications architecture, as can be seen in Figure 1
below. In this arrangement, data to be sent over the wire enters via the top of the stack, and
works its way down. Each layer processes the data, possibly adding, removing, or
modifying bytes, and passes the data down to the next layer. The bottom most layer is
connected to the communications hardware itself.

Figure 1 Seriald Communications Layer Stack

Each individual layer operates independently from the others; the layered design allows
individual layers to be added, removed, reordered, or modified without requiring changes
outside of the code for an individual layer.

The layer stack shown in Figure 1 above is typical; however, it is not uncommon to
encounter situations in which certain layers (such as the Reed-Solomon FEC layer) would
be missing, or additional layers (i.e., for channel access) would be added. But the stack
shown is the most common setup. This document describes the over-the-air format for
version 1 of Seriald.

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 7

Channelization

Figure 2 Channelized Message Format

Messages from one Seriald to another are sent over virtual channels, allowing multiple
logical data streams to be carried over a single serial connection. The channel is identified
by a single byte prepended to the message, as seen in Figure 2 above. The channel with the
identifier '0' (ASCII character 0x30) is used as the management channel for inter-node
control communications. The channel with the identifier '1' (ASCII character 0x31) is
designated as the CoT channel, and is expected to carry Cursor on Target messages exclu-
sively. Other channels are treated as carrying opaque data, with no expectation as to their
content. There are typically 5 user channels, designated as “CoT”, “Chan2”, “Chan3”,
“Chan4”, and “Chan5”, which use the channel tags “1”, “2”, “3”, “4”, and “5”, respec-
tively.

For example, if a station wishes to send the message “hello” on channel “3”, it would send:

3hello

With the corresponding hex dump:

33 68 65 6c 6c 6f

There are currently two messages defined for the management channel. The first one is the
“Comm Check” request, and the other is the corresponding “Comm Check” response.
These messages are used to verify basic communication over the end-to-end communica-
tion system. The format of the Comm Check message is:

?seq#time#host

where:

• seq is a unique (usually monotonically increasing) sequence number. It can be any
alphanumeric string not containing the character '#'.

• time is the current time at the sending station. It is usually expressed as an ASCII
string representing the current time. in seconds since the epoch (1970-01-
01T00:00:00.00Z); however, it may be expressed in any format desired by the sending
station, as long as the representation does not contain the character '#'. This time value
is not to be interpreted by other stations; it will be returned to the sending station for
round trip time (RTT) calculation.

• host is an identifier for the sending station. It is commonly the ASCII string returned
by the gethostname(2) system call, but it may be any sequence of bytes that does not
contain the character '#'.

Upon receipt of a Comm Check request message, a station should change only the first
character from a '?' to a '!' (to indicate a change from a request to a reply), and send the new
message back out.

CHAN DATA

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 8

Upon receipt of a Comm Check reply, the host should use the contents of the time field to
calculate a round trip time for the message.

If a station with a hostname of “foo” wishes to send its 12th Comm. Check at 2006-03-
16T17:03:38.00Z, the string passed to the layer below (including the leading “0” to indicate
that it is a message on the management channel) would be:

0?12#1132528618.00#foo

with hex dump:

30 3f 31 32 23 31 31 33 32 35 32 38 36 31 38 2e 30 30 23 66 6f 6f

Upon receipt, any (and all) other station(s) would respond with:

0!12#1132528618.00#foo

with hex dump:

30 21 31 32 23 31 31 33 32 35 32 38 36 31 38 2e 30 30 23 66 6f 6f0

Automatic Repeat Request

Figure 3 ARQ Message Format

Reliable delivery of a message is accomplished by an automatic repeat request (ARQ)
scheme. When a message is to be encoded for transmit, it is broken up into smaller chunks,
typically of not more than 1000 bytes. Each chunk has a header applied to it, as seen in
Figure 3 above, and is passed down to the next layer for further processing. If an ACK for
an individual chunk is not received within a time-out period, typically 120 seconds, then
the chunk is retransmitted. Chunks are retransmitted until the maximum retransmission
limit is reached. This limit is typically 4, after which the message is considered to have
failed.

The header for each chunk of an ARQ message is given by:

R#from#to#seq:part:total>

The leading “R” indicates that the message is requesting reliable delivery.

• from is the unique station identifier of the sending node (also referred to as its MAC
address).

• to is the unique station identifier of the recipient node. The station identifiers can be
any alphanumeric sequence made up of characters other than '#'. There is no preset
requirement on the length of station identifiers. The only requirement is that they be
unique across the network.

• seq is a unique message identifier. It must be an ASCII string of a numeric values, but
there is no requirement that its value be related to the value used on any other
messages. (i.e., it does not need to be sequential in relation to previous messages,

ARQHDR DATA

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 9

despite its name). It must be unique across all messages sent from a source node to a
destination node, but it is the same for all chunks of a given message. Note that in order
to support the reinitialization of one node without requiring the restart of all other
nodes, the sequence number should attempt to be unique for all time, not just unique
to a given invocation of the software (i.e., initialize with a sufficiently diverse random
value, or save state across restarts).

• part indicates which chunk of the message follows.
• total indicates the total number of chunks. Both are ASCII strings representing

decimal numbers.
• The “>”character indicates that it is an outgoing chunk.

Immediately following the header will be one chunk of message data. Message chunks are
typically 1000 bytes long, but there is no requirement that the chunks be any particular size,
or all the same size. The final chunk will typically be shorter than the previous ones, as the
message is not padded to fill out a partial chunk.

When a reliable message addressed to a particular station is received from the radio by that
station, the receiving station should indicate successful reception with the ACK message:

R#from#to#seq:part:total<

where seq, part, and total are exactly as taken from the received message. The “<”
character indicates that the message is an ACK. No data should follow the ACK. (However,
there may be multiple independent messages concatenated and sent, as detailed in the “Bit
Framing” section.) The values for from and to are relative to the station sending the ACK.
(i.e., they would be swapped from the message being ACKed.)

When a chunk of a reliable message is received, it should be buffered until all parts have
been received. When all parts have been received, the entire message should be reassem-
bled (without any ARQ headers), and passed up the stack for delivery. Message parts may
arrive out of sequence. Individual parts may be received more than once. In either of these
cases, the message should only be passed up exactly once, regardless of how many times
various parts arrive.

In order to meet this requirement, it is necessary that a receiving station continue to keep a
record of messages that have been received after the complete message has arrived and
been passed up the stack. In the case where the ACKs are not properly received at the
sending node, the sender may re-send the entire message multiple times, and despite
multiple complete sets of chunks arriving, only one copy of the message should be passed
up the stack.

If a message is not to receive reliable transport (i.e., SA message that are to be routinely re-
sent), then the ARQ header should be 'U#', to indicate unreliable delivery. When a message
with a leading 'U#' is received, the 'U#' should be stripped off, and the message body
should be immediately passed up the stack.

For example, if the message “hello” wishes to be sent reliably from station “a” to station
“b”, the sending station (“a”) would transmit:

R#a#b#12:1:1>hello

with the corresponding hex dump:

52 23 61 23 62 23 31 32 3a 31 3a 31 3e 68 65 6c 6c 6f

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 10

In this case, the sequence number for this message is 12.

Upon receipt, station “b” would respond with:

R#b#a#12:1:1<

with the corresponding hex dump:

52 23 62 23 61 23 31 32 3a 31 3a 31 3c

and station “b” would pass the message up the stack, as it is complete.

If a reliable message arrives at any station other than the one to which it is addressed, it is
discarded, no ACK is generated, and no message is passed up to higher layers.

If station “a” wanted to send the message “hello” unreliably, it would send:

U#hello

With the corresponding hex dump:

55 23 68 65 6c 6c 6f

As unreliable messages are all implicitly broadcast, there is no address specified. Upon
receipt of the unreliable message, the receiving station(s) should pass the message up
immediately, and no ACK is generated or sent. It should be noted that unreliable messages
cannot be fragmented.

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 11

Frame Check Sequence

Figure 4 Message with Appended Frame Check Sequence

Verification of successful reception of a message is ensured via a CRC16 frame check
sequence (FCS). The FCS is appended to the message data as shown in Figure 4 above, and
is generated using the IBM BISYNC CRC16 algorithm, with a generator polynomial of
x16+x15+x2+1. C code for a compatible implementation of the algorithm is:

unsigned short int crc16(unsigned char *d, int n)
{
 unsigned short int crc=0;
 int i, bit;

 for (i = 0; i < n; i++) {
 crc ^= d[i];
 for (bit = 0; bit < 8; bit++)
 crc = crc & 1 ? (crc >> 1) ^ 0xa001 : crc >> 1;
 }
 return crc;
}

The 16 bit CRC code is stored in big endian format. When decoding received data, if the
received CRC16 does not match the computed CRC16 for the data (up to, but not including
the 16 bit FCS), then the entire message is considered to be in error and should be discarded.

For example, if the input message is “hello”, then the resulting sequence would be:

68 65 6c 6c 6f 34 d2

DATA CRC16

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 12

Forward Error Correction

Figure 5 Reed-Solomon Encoded Message Format

Forward Error Correction (FEC) is accomplished by applying a (31,21) Reed-Solomon
code to the data. The Reed-Solomon algorithm uses 5 bit symbols, with 31 total symbols
per codeword, comprised of 21 data symbols followed by 10 parity symbols. Note that the
Makito implementation does not check parity symbols.

The code over GF(25) is defined by the primitive polynomial x5+x2+1. The power of the
first of the 10 consecutive roots of the generator polynomial is 120, and the primitive of the
field is given as x. Each codeword is 155 bits long. The encoded sequence is formatted as
sets of 105 bits of message data, followed by 50 bits of parity information as shown in
Figure 5 above. Symbols are packed into bytes MSb first. (i.e., the symbol 10111 would get
packed into a byte as 10111000, with the next symbol starting in the 3 least significant bits
of that byte.)

As the input data cannot necessarily be broken into an integer number of codewords, prior
to the Reed-Solomon encoding process, a 16 bit little-endian length field (len) is prepended
to the data. This length field is a count of the number of original data bytes in the message
(not including the 2 bytes of len). The message data is then padded by appending sufficient
zero bits as to result in an integer number of codewords. When a block of received symbols
is being decoded, if the total decoded length is less than len+2, then the whole block is
considered to be in error and is discarded. If it is longer than len+2, then the two bytes of
len are removed, and the next len bytes are extracted and passed up to the next layer.

For example, if the input message is “hello”, then the string passed to the Reed-Solomon
encoder would be 05 00 68 65 6c 6c 6f., and the resulting coded sequence would be
(including 49 padding bits appended to the source data to make it an integer multiple of 105
bits in length, and the five pad bits appended to the encoded sequence to fill out the last
byte):

05 00 68 65 6c 6c 6f 00 00 00 00 00 00 3b e3 8b e5 c7 ac 20.

DATA PARITY DATA

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 13

Bit Framing

Figure 6 Bit Framed Message Format

Bit framing is accomplished by marking the start of a message with the byte sequence
(represented as hex values)

6f 48 65 59 21

Due to the requirement that these bytes be shifted out LSb first, the bit sync sequence seen
on the wire would be:

1111011000010010101001101001101010000100

Immediately following that sequence, three copies of the length of the following data block
(not including the bit framing header) are appended, as shown in Figure 6 above. Each
length is composed of a 16 bit little endian value indicating the number of bytes, followed
by a length check, which is 16 bits calculated as (((2<<16)–(2*len))&0xffff). The data
to be sent follows the three length plus check repetitions. For example, if the input sequence
is “hello”, the hex dump of the sequence of bytes sent out would be:

6f 48 65 59 21 05 00 f6 ff 05 00 f6 ff 05 00 f6 ff 68 65 6c 6c 6f

When data is received from the radio, it is compared to the sync pattern by successive bit
shifts, until the detection threshold has been met. A valid sync sequence is received when
the number of bit differences between the target sequence and the received sequence is 4 or
less (90% match). If the complement of the target sequence and the received sequence
differ by 4 or less bits, then an inverted sync is detected, and all subsequent data read from
the port following the sync sequence is inverted.

Once a good packet has been detected, which occurs if at least one length is received
correctly (i.e., one in which the computed checksum agrees with the received checksum),
the len bytes immediately following the three encoded lengths are received and passed up
to the next layer.

One consequence of the way in which the message length is encoded is that the maximum
length of an individual message is 216-1, or 65535 bytes. In order to send messages longer
than that, the message may be sent using the reliable delivery method (see the “Automatic
Repeat Request” section), which will break the message up into smaller pieces prior to
transmit. Note that there is no way to send a broadcast or best-effort delivery message with
total size greater than 65535 bytes. Also note that this is the maximum size of the message
body after all transforms performed by higher layers in the stack have been applied. This
results in a maximum size for an unreliable message at approximately 43K bytes, assuming
the FEC described in the section “Forward Error Correction” is in use.

SYNC LEN LEN LEN DATA

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 14

Figure 7 Serial Port Timing Diagram

Serial Port Timing

Data to be sent out over the serial port to an attached radio must observe various timing
constraints in order to be successfully received at a remote node. These relations can be
seen in Figure 7 above. When a station has data to transmit, it must assert PTT (via RTS).
The station waits for acknowledgement that the radio is ready to accept data, which may be
indicated by the radio asserting CTS, the radio providing CLK, or there may be no indica-
tion. The sending station must wait for the Cts2Data time (specified in milliseconds) after
CTS is received before attempting to send any data. If the radio does not provide CTS in
response to RTS, CTS is assumed to occur simultaneously with the asserting of RTS, and
therefore, the Cts2Data period begins when RTS is asserted. A typical value for Cts2data
is 500 msec, but it varies depending on the communications hardware in use. Once the
Cts2Data period has elapsed, the station sends out a sequence of zero or more pre-pad
characters. These characters may be repeated occurrences of a single character, a rotating
set of characters, or any other characters as necessary, as long as the sequence does not
include the sync sequence discussed in the section “Bit Framing”. Once the pre-pad char-
acters have been sent, one or more messages may be concatenated and sent. Zero or more
bits of filler data may be inserted between the messages, with message boundaries being
demarcated as discussed in the “Bit Framing” section. Multiple messages may be concate-
nated until the total transmission time reaches MaxTxTime, which is specified in millisec-
onds. MaxTxTime is measured from when PTT is asserted. MaxTxTime is configurable,
with a typical value of 60000 msec.

If RTS is asserted, and no CTS (or clock) is returned within a reasonable time (typically
10000 msec), then RTS is de-asserted, and the cycle begins again.

When there are no more messages to send, or MaxTxTime has elapsed, a sequence of zero
or more post-pad characters are sent, subject to the same constraints as the pre-pad charac-
ters. Once the post-pad characters have been sent, PTT is held asserted for the time
specified in Data2Rts (in milliseconds). Once Data2Rts has elapsed, PTT is released.
Data2Rts often has the same value as Cts2Data.

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

Makito CoT Addendum, v2.3, Issue 01 15

After PTT is released, a sending station may not initiate a new transmission for a period of
IdleChannel, which is specified in milliseconds. In addition, a station may not initiate a
transmission until TurnAround (specified in milliseconds) has elapsed following any indi-
cation of channel activity. This includes receiving any bytes from the serial device, or any
other indication provided, such as asserting of the CD line. Typical values for IdleChannel
and TurnAround are 3000 msec and 1000 msec, respectively.

Data to be sent over the radio is transmitted least significant bit first. When driving a radio
via a synchronous connection, there are no character framing bits. Each byte is transmitted
as exactly 8 bits. As a consequence, when a transmission begins, there must be a contin-
uous, uninterrupted flow of bytes out the port; any pauses will be interpreted as extra data
bits inserted in the middle of the message, which will corrupt the data.

For example if the two bytes 0x12 and 0x34 are to be sent out, the bit sequence seen on the
wire will be:

0100100000101100

where the bit on the left represents the first bit sent, and time increases to the right.

Data to be received should be shifted in LSb first, and delivered repacked into bytes such
that the most significant bit of the ith byte was received immediately before the least signif-
icant bit of the (i+1)th byte.

All example byte sequences in this document assume this data packing convention.

Data that is sent via an asynchronous connection (typically to a radio, null modem, or other
asynchronous device) is sent with the appropriate number of start and stop bits, as required
by the asynchronous device in use.

Conclusion

Given the layer stack in Figure 1: Seriald Communications Layer Stack, if the message
“hello” is to be sent on channel 3, and it is to be carried unreliably, the resulting byte
sequence sent to the serial port is as follows:

6f 48 65 59 21 14 00 d8 ff 14 00 d8 ff 14 00 d8 ff 0a 00 55 23 33 68 65 6c 6c
6f 36 00 00 57 18 b1 9a b5 d0 20

The original message body highlighted in red:

6f 48 65 59 21 14 00 d8 ff 14 00 d8 ff 14 00 d8 ff 0a 00 55 23 33 68 65 6c 6c
6f 36 00 00 57 18 b1 9a b5 d0 20

The channelization header highlighted in green:

6f 48 65 59 21 14 00 d8 ff 14 00 d8 ff 14 00 d8 ff 0a 00 55 23 33 68 65 6c 6c
6f 36 00 00 57 18 b1 9a b5 d0 20

The ARQ information highlighted in blue:

6f 48 65 59 21 14 00 d8 ff 14 00 d8 ff 14 00 d8 ff 0a 00 55 23 33 68 65 6c 6c
6f 36 00 00 57 18 b1 9a b5 d0 20

Cursor on Target Capture from the Makito
Seriald Version 1 Over-the-Air Protocol

The FCS information highlighted in brown:

6f 48 65 59 21 14 00 d8 ff 14 00 d8 ff 14 00 d8 ff 0a 00 55 23 33 68 65 6c 6c
6f 36 00 00 57 18 b1 9a b5 d0 20

The Reed-Solomon block padding, length, and parity information highlighted in pink:

6f 48 65 59 21 14 00 d8 ff 14 00 d8 ff 14 00 d8 ff 0a 00 55 23 33 68 65 6c 6c
6f 36 00 00 57 18 b1 9a b5 d0 20

The bit framing sync sequence in orange, and encoded block length repetitions in yellow:

6f 48 65 59 21 14 00 d8 ff 14 00 d8 ff 14 00 d8 ff 0a 00 55 23 33 68 65 6c 6c
6f 36 00 00 57 18 b1 9a b5 d0 20

The same message (“hello”), if sent reliably, with the same color coding:

6f 48 65 59 21 27 00 b2 ff 27 00 b2 ff 27 00 b2 ff 14 00 52 23 61 23 62 23 31
3a 31 3a 31 29 33 b8 4f e3 d6 2f 8c da 19 5b 1b 1b c7 c6 00 00 00 00 02 03
e5 8c 37 2e c8

Note that due to the fact that the Reed-Solomon block size is 155 bits, which is 19.375
bytes, the coloring of individual bytes beyond the first block is approximate, as individual
message bytes may contain bits from two separate layers. Individual codewords are not
padded out to be an integer number of bytes; only the last codeword is padded so that the
overall message occupies an integer number of bytes. This is why the actual message data
in the above example is not recognizable as the ASCII string “hello”.

	Cursor on Target Capture from the Makito
	Introduction
	Cursor on Target

	CoT to KLV Metadata Mapping
	Seriald Version 1 Over-the-Air Protocol
	Overview
	Channelization
	Automatic Repeat Request
	Frame Check Sequence
	Forward Error Correction
	Bit Framing
	Serial Port Timing
	Conclusion

